Menu Close

How-many-ordered-pairs-a-b-with-b-lt-a-lt-100-a-b-N-such-that-a-b-both-a-1-b-1-are-integers-




Question Number 149323 by naka3546 last updated on 04/Aug/21
How  many  ordered  pairs (a,b) with  b < a < 100  ,  a,b ∈ N  such  that  (a/b)  both   ((a+1)/(b+1))  are  integers  .
$${How}\:\:{many}\:\:{ordered}\:\:{pairs}\:\left({a},{b}\right)\:{with}\:\:{b}\:<\:{a}\:<\:\mathrm{100}\:\:,\:\:{a},{b}\:\in\:\mathbb{N}\:\:{such}\:\:{that}\:\:\frac{{a}}{{b}}\:\:{both}\:\:\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}\:\:{are}\:\:{integers}\:\:.\: \\ $$
Answered by Olaf_Thorendsen last updated on 05/Aug/21
N = Σ_(b=1) ^(98) Σ_(a=b+1) ^(99) ⌊((⌊(a/b)⌋)/(a/b))×((⌊((a+1)/(b+1))⌋)/((a+1)/(b+1)))⌋  N = 85
$$\mathrm{N}\:=\:\underset{{b}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}\underset{{a}={b}+\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\lfloor\frac{\lfloor\frac{{a}}{{b}}\rfloor}{\frac{{a}}{{b}}}×\frac{\lfloor\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}\rfloor}{\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}}\rfloor \\ $$$$\mathrm{N}\:=\:\mathrm{85} \\ $$
Commented by naka3546 last updated on 05/Aug/21
thank you, sir.
$${thank}\:{you},\:{sir}. \\ $$
Answered by Olaf_Thorendsen last updated on 05/Aug/21

Leave a Reply

Your email address will not be published. Required fields are marked *