Menu Close

How-many-password-containing-6-characters-of-the-letters-in-the-word-Move-Now-




Question Number 130685 by EDWIN88 last updated on 28/Jan/21
How many password containing  6 characters of the letters in the   word ′′ Move Now ′′ ?
$${How}\:{many}\:{password}\:{containing} \\ $$$$\mathrm{6}\:{characters}\:{of}\:{the}\:{letters}\:{in}\:{the}\: \\ $$$${word}\:''\:{Move}\:{Now}\:''\:? \\ $$
Answered by liberty last updated on 28/Jan/21
case(1) O_−  _−  _−  _−  _(−−)  = 6!  case(2) O_−  O_−  _−  _−  _−  _−  = C_( 4) ^( 5)  × ((6!)/(2!)) = 5×((6!)/2)  totally many password is 6! + (5/2)×6!  = 6! ((7/2))= 2520
$$\mathrm{case}\left(\mathrm{1}\right)\:\underset{−} {\mathrm{O}}\underset{−} {\:}\underset{−} {\:}\underset{−} {\:}\underset{−−} {\:}\:=\:\mathrm{6}! \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\:\underset{−} {\mathrm{O}}\:\underset{−} {\mathrm{O}}\underset{−} {\:}\underset{−} {\:}\underset{−} {\:}\underset{−} {\:}\:=\:\mathrm{C}_{\:\mathrm{4}} ^{\:\mathrm{5}} \:×\:\frac{\mathrm{6}!}{\mathrm{2}!}\:=\:\mathrm{5}×\frac{\mathrm{6}!}{\mathrm{2}} \\ $$$$\mathrm{totally}\:\mathrm{many}\:\mathrm{password}\:\mathrm{is}\:\mathrm{6}!\:+\:\frac{\mathrm{5}}{\mathrm{2}}×\mathrm{6}! \\ $$$$=\:\mathrm{6}!\:\left(\frac{\mathrm{7}}{\mathrm{2}}\right)=\:\mathrm{2520} \\ $$
Answered by JDamian last updated on 28/Jan/21
Permutations with repetition    ((7!)/(2!))=((7!)/2)
$${Permutations}\:{with}\:{repetition} \\ $$$$ \\ $$$$\frac{\mathrm{7}!}{\mathrm{2}!}=\frac{\mathrm{7}!}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *