Menu Close

How-many-positive-integers-less-than-200-have-exaxtly-6-positive-factors-




Question Number 125080 by ZiYangLee last updated on 08/Dec/20
How many positive integers less than  200 have exaxtly 6 positive factors?
$$\mathrm{How}\:\mathrm{many}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{less}\:\mathrm{than} \\ $$$$\mathrm{200}\:\mathrm{have}\:\mathrm{exaxtly}\:\mathrm{6}\:\mathrm{positive}\:\mathrm{factors}? \\ $$
Answered by mr W last updated on 08/Dec/20
say such a number is  n=p^a q^b r^c ...  with p,q,r,...=prime≥2  number of factors:  (a+1)(b+1)(c+1)...=6=2×3  ⇒a=1,b=2,c=d=...=0  ⇒n=pq^2 <200    ⇒q<(√((200)/2))=10  ⇒q=2,3,5,7  q=2: p<((200)/2^2 )=50 ⇒p=2,3,5,7,...,47 ⇒15 numbers  q=3: p<((200)/3^2 )=22 ⇒p=2,3,5,7,...,19 ⇒8 numbers  q=5: p<((200)/5^2 )=8 ⇒p=2,3,5,7 ⇒4 numbers  q=7: p<((200)/7^2 )=4 ⇒p=2,3 ⇒2 numbers    ⇒totally 15+8+4+2=29 numbers
$${say}\:{such}\:{a}\:{number}\:{is} \\ $$$${n}={p}^{{a}} {q}^{{b}} {r}^{{c}} … \\ $$$${with}\:{p},{q},{r},…={prime}\geqslant\mathrm{2} \\ $$$${number}\:{of}\:{factors}: \\ $$$$\left({a}+\mathrm{1}\right)\left({b}+\mathrm{1}\right)\left({c}+\mathrm{1}\right)…=\mathrm{6}=\mathrm{2}×\mathrm{3} \\ $$$$\Rightarrow{a}=\mathrm{1},{b}=\mathrm{2},{c}={d}=…=\mathrm{0} \\ $$$$\Rightarrow{n}={pq}^{\mathrm{2}} <\mathrm{200} \\ $$$$ \\ $$$$\Rightarrow{q}<\sqrt{\frac{\mathrm{200}}{\mathrm{2}}}=\mathrm{10} \\ $$$$\Rightarrow{q}=\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7} \\ $$$${q}=\mathrm{2}:\:{p}<\frac{\mathrm{200}}{\mathrm{2}^{\mathrm{2}} }=\mathrm{50}\:\Rightarrow{p}=\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7},…,\mathrm{47}\:\Rightarrow\mathrm{15}\:{numbers} \\ $$$${q}=\mathrm{3}:\:{p}<\frac{\mathrm{200}}{\mathrm{3}^{\mathrm{2}} }=\mathrm{22}\:\Rightarrow{p}=\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7},…,\mathrm{19}\:\Rightarrow\mathrm{8}\:{numbers} \\ $$$${q}=\mathrm{5}:\:{p}<\frac{\mathrm{200}}{\mathrm{5}^{\mathrm{2}} }=\mathrm{8}\:\Rightarrow{p}=\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7}\:\Rightarrow\mathrm{4}\:{numbers} \\ $$$${q}=\mathrm{7}:\:{p}<\frac{\mathrm{200}}{\mathrm{7}^{\mathrm{2}} }=\mathrm{4}\:\Rightarrow{p}=\mathrm{2},\mathrm{3}\:\Rightarrow\mathrm{2}\:{numbers} \\ $$$$ \\ $$$$\Rightarrow{totally}\:\mathrm{15}+\mathrm{8}+\mathrm{4}+\mathrm{2}=\mathrm{29}\:{numbers} \\ $$
Commented by mr W last updated on 08/Dec/20

Leave a Reply

Your email address will not be published. Required fields are marked *