Menu Close

How-many-positive-integers-x-satisfy-log-x-8-x-2-4-lt-7-log-2-8-x-




Question Number 118511 by ZiYangLee last updated on 18/Oct/20
How many positive integers x satisfy  log_(x/8) (x^2 /4)<7+log_2 (8/x)
Howmanypositiveintegersxsatisfylogx8x24<7+log28x
Answered by mr W last updated on 18/Oct/20
2×((ln (x/2))/(ln (x/8)))<7+((ln (8/x))/(ln 2))  2×((ln (x/2))/(ln (x/2)−2ln 2))<7+((2ln 2−ln (x/2))/(ln 2))  t=ln (x/2)  ((2t)/(t−2ln 2))<((9ln 2−t)/(ln 2))  ⇒t^2 −(9ln 2)t+18(ln 2)^2 <0  ⇒t=((9ln 2±3ln 2)/2)=3ln 2,6ln 2  ⇒3ln 2<t<6ln 2  ⇒ln 2^3 <ln (x/2)<ln 2^6   ⇒2^4 =16<x<2^7 =128  ⇒17≤x≤127 ⇒111 solutions
2×lnx2lnx8<7+ln8xln22×lnx2lnx22ln2<7+2ln2lnx2ln2t=lnx22tt2ln2<9ln2tln2t2(9ln2)t+18(ln2)2<0t=9ln2±3ln22=3ln2,6ln23ln2<t<6ln2ln23<lnx2<ln2624=16<x<27=12817x127111solutions
Answered by Lordose last updated on 18/Oct/20
log_(x/8) ((x/2))^2 < 7 + log_2 (8/x)  changing the base of logarithm,  ((log_2 ((x/2))^2 )/(log_2 ((x/2)×(1/4)))) < 7 + log_2 ((2/x)) + log_2 2^2   ((2log_2 ((x/2)))/(log_2 ((x/2))−2)) < 9 −log_2 ((x/2))  set  log_2 ((x/2))=y  ((2y)/(y−2)) < 9−y  2y < (9−y)(y−2)  2y < 9y−18−y^2 +2y  0 < −(y^2 −9y+18)  0>y^2 −9y+18  0>(y−3)(y−6)  (y−3)(y−6) < 0  y<3 and y<6  x<16 and x<128
logx8(x2)2<7+log28xchangingthebaseoflogarithm,log2(x2)2log2(x2×14)<7+log2(2x)+log2222log2(x2)log2(x2)2<9log2(x2)setlog2(x2)=y2yy2<9y2y<(9y)(y2)2y<9y18y2+2y0<(y29y+18)0>y29y+180>(y3)(y6)(y3)(y6)<0y<3andy<6x<16andx<128
Answered by 1549442205PVT last updated on 18/Oct/20
We need the condition x>0,x≠8  log_(x/8) (x^2 /4)<7+log_2 (8/x)⇔log_(x/8) [((x/8))^2 .16]  <7+log_2 8−log_2 x⇔log_(x/8) ((x/8))^2 +log_(x/8) 16  <7+3−log_2 x⇔2+4log_(x/8) 2<10−log_2 x  ⇔(4/(log_2 (x/8)))<8−log_2 x⇔(4/(log_2 x−3))<8−log_2 x  ⇔(4/(log_2 x−3))+log_2 x−8<0.Put log_2 x=t  ⇔(4/(t−3))+t−8<0⇔((t^2 −11t+28)/(t−3))<0  ⇔(((t−4)(t−7))/(t−3))<0  ⇔t∈(−∞,3)∪(4,7)  i)log_2 x<3⇔0<x<8  ii)4<log_2 x<7⇔2^4 <x<2^7 ⇔16<x<128  Thus,the roots of given inequality are:  x∈(0,8)∪(16,128)  Since x∈N^∗ ,x∈{1,2,...,7}∪{17,...,127}   hence all there are 11  positive integers  satisfying the given inequality
Weneedtheconditionx>0,x8logx8x24<7+log28xlogx8[(x8)2.16]<7+log28log2xlogx8(x8)2+logx816<7+3log2x2+4logx82<10log2x4log2x8<8log2x4log2x3<8log2x4log2x3+log2x8<0.Putlog2x=t4t3+t8<0t211t+28t3<0(t4)(t7)t3<0t(,3)(4,7)i)log2x<30<x<8ii)4<log2x<724<x<2716<x<128Thus,therootsofgiveninequalityare:x(0,8)(16,128)\boldsymbolSince\boldsymbolx\boldsymbolN,\boldsymbolx{1,2,,7}{17,,127}\boldsymbolhence\boldsymbolall\boldsymbolthere\boldsymbolare11\boldsymbolpositive\boldsymbolintegers\boldsymbolsatisfying\boldsymbolthe\boldsymbolgiven\boldsymbolinequality
Commented by mr W last updated on 18/Oct/20
very correct!
verycorrect!verycorrect!
Commented by 1549442205PVT last updated on 18/Oct/20
Thank Sir.You are welcome
ThankSir.YouarewelcomeThankSir.Youarewelcome
Commented by ZiYangLee last updated on 19/Oct/20
PERFECT!★★
PERFECT!PERFECT!

Leave a Reply

Your email address will not be published. Required fields are marked *