Menu Close

How-many-possible-solution-sets-that-satisfy-x-1-x-2-x-3-x-4-5-with-0-x-1-3-0-x-2-3-0-x-3-2-0-x-4-2-




Question Number 56913 by Joel578 last updated on 26/Mar/19
How many possible solution sets that satisfy   x_1  + x_2  + x_3  + x_4  = 5  with  0 ≤ x_1  ≤ 3    0 ≤ x_2  ≤ 3  0 ≤ x_3  ≤ 2  0 ≤ x_4  ≤ 2
Howmanypossiblesolutionsetsthatsatisfyx1+x2+x3+x4=5with0x130x230x320x42
Commented by 121194 last updated on 26/Mar/19
3 2 0 0  3 1 1 0  3 1 0 1  3 0 2 0  3 0 1 1  3 0 0 2  2 3 0 0  2 2 1 0  2 2 0 1  2 1 2 0  2 1 1 1  2 1 0 2  2 0 2 1  2 0 1 2  1 3 1 0  1 3 0 1  1 2 2 0  1 2 1 1  1 2 0 2  1 1 2 1  1 1 1 2  1 0 2 2  0 3 2 0  0 3 1 1  0 3 0 2  0 2 2 1  0 2 1 2  0 1 2 2  28
320031103101302030113002230022102201212021112102202120121310130112201211120211211112102203200311030202210212012228
Commented by Joel578 last updated on 27/Mar/19
thank you very much
thankyouverymuch
Answered by mr W last updated on 26/Mar/19
using generating functions  x_1 : 1+t+t^2 +t^3   x_2 : 1+t+t^2 +t^3   x_3 : 1+t+t^2   x_4 : 1+t+t^2   x_1 +x_2 +x_3 +x_4 : (1+t+t^2 +t^3 )^2 (1+t+t^2 )^2 =(((1−t^4 )^2 (1−t^3 )^2 )/((1−t)^4 ))  =Σ_(k=0) ^2 C_k ^2 (−1)^k t^(4k) Σ_(k=0) ^2 C_k ^2 (−1)^k t^(3k) Σ_(k=0) ^∞ C_k ^(3+k) t^k     coef. of term t^5 :  C_1 ^2 (−1)^1 C_0 ^2 (−1)^0 C_1 ^4 +C_0 ^2 (−1)^0 C_1 ^2 (−1)^1 C_2 ^5 +C_0 ^2 (−1)^0 C_0 ^2 (−1)^0 C_5 ^8   =−C_1 ^2 C_0 ^2 C_1 ^4 −C_0 ^2 C_1 ^2 C_2 ^5 +C_0 ^2 C_0 ^2 C_5 ^8   =−2×4−2×10+56  =28    ⇒there are 28 possible solutions for  x_1  + x_2  + x_3  + x_4  = 5  under given conditions.    other terms see below:
usinggeneratingfunctionsx1:1+t+t2+t3x2:1+t+t2+t3x3:1+t+t2x4:1+t+t2x1+x2+x3+x4:(1+t+t2+t3)2(1+t+t2)2=(1t4)2(1t3)2(1t)4=2k=0Ck2(1)kt4k2k=0Ck2(1)kt3kk=0Ck3+ktkcoef.oftermt5:C12(1)1C02(1)0C14+C02(1)0C12(1)1C25+C02(1)0C02(1)0C58=C12C02C14C02C12C25+C02C02C58=2×42×10+56=28thereare28possiblesolutionsforx1+x2+x3+x4=5undergivenconditions.othertermsseebelow:
Commented by mr W last updated on 26/Mar/19
Commented by mr W last updated on 26/Mar/19
x_1 +x_2 +x_3 +x_4 =0 ⇒ 1 solution  x_1 +x_2 +x_3 +x_4 =1 ⇒ 4 solutions  x_1 +x_2 +x_3 +x_4 =2 ⇒ 10 solutions  x_1 +x_2 +x_3 +x_4 =3 ⇒ 18 solutions  x_1 +x_2 +x_3 +x_4 =4 ⇒ 25 solutions  x_1 +x_2 +x_3 +x_4 =5 ⇒ 28 solutions  x_1 +x_2 +x_3 +x_4 =6 ⇒ 25 solutions  x_1 +x_2 +x_3 +x_4 =7 ⇒ 18 solutions  x_1 +x_2 +x_3 +x_4 =8 ⇒ 10 solutions  x_1 +x_2 +x_3 +x_4 =9 ⇒ 4 solutions  x_1 +x_2 +x_3 +x_4 =10 ⇒ 1 solution
x1+x2+x3+x4=01solutionx1+x2+x3+x4=14solutionsx1+x2+x3+x4=210solutionsx1+x2+x3+x4=318solutionsx1+x2+x3+x4=425solutionsx1+x2+x3+x4=528solutionsx1+x2+x3+x4=625solutionsx1+x2+x3+x4=718solutionsx1+x2+x3+x4=810solutionsx1+x2+x3+x4=94solutionsx1+x2+x3+x4=101solution
Commented by Joel578 last updated on 27/Mar/19
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *