Menu Close

How-many-possible-triple-of-a-b-c-integers-so-that-a-b-c-19-ab-c-97-




Question Number 45291 by naka3546 last updated on 11/Oct/18
How  many  possible  triple  of  (a,b,c)  ∈  integers  so  that  :             ∣ a + b ∣ + c  =  19                   ab + ∣ c ∣  =  97
Howmanypossibletripleof(a,b,c)integerssothat:a+b+c=19ab+c=97
Answered by MJS last updated on 12/Oct/18
c=19−∣a+b∣  c=97−ab ∨ c=ab−97    19−∣a+b∣=97−ab ∨ 19−∣a+b∣=ab−97  ∣a+b∣=ab−78 ∨ ∣a+b∣=116−ab  a+b=ab−78 ∨ a+b=78−ab ∨ a+b=116−ab ∨ a+b=ab−116  b=((a+78)/(a−1)) ∨ b=((78−a)/(a+1)) ∨ b=((116−a)/(a+1)) ∨ b=((a+116)/(a−1))    case 1  a=0 b=−78 no solution for c  a=2 b=80 no solution for c    case 2  a=−80 b=−2 no solution for c  a=0 b=78 no solution for c    case 3  a=−118 b=−2 no solution for c  a=−40 b=−4 no solution for c  a=−14 b=−10 no solution for c  a=0 b=116 c=−97  a=2 b=38 c=−21  a=8 b=12 c=−1    case 4  a=−116 b=0 c=−97  a=−38 b=−2 c=−21  a=−12 b=−8 c=−1  a=2 b=118 no solution for c  a=4 b=40 no solution for c  a=10 b=14 no solution for c    ⇒ because a and b are interchangeable  we have 12 solutions
c=19a+bc=97abc=ab9719a+b∣=97ab19a+b∣=ab97a+b∣=ab78a+b∣=116aba+b=ab78a+b=78aba+b=116aba+b=ab116b=a+78a1b=78aa+1b=116aa+1b=a+116a1case1a=0b=78nosolutionforca=2b=80nosolutionforccase2a=80b=2nosolutionforca=0b=78nosolutionforccase3a=118b=2nosolutionforca=40b=4nosolutionforca=14b=10nosolutionforca=0b=116c=97a=2b=38c=21a=8b=12c=1case4a=116b=0c=97a=38b=2c=21a=12b=8c=1a=2b=118nosolutionforca=4b=40nosolutionforca=10b=14nosolutionforcbecauseaandbareinterchangeablewehave12solutions

Leave a Reply

Your email address will not be published. Required fields are marked *