Question Number 43224 by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
$${how}\:{many}\:{square}\:{in}\:{a}\:{chess}\:{board}. \\ $$
Answered by ajfour last updated on 08/Sep/18
$$\mathrm{64}+\mathrm{49}+\mathrm{36}+\mathrm{25}+\mathrm{16}+\mathrm{9}+\mathrm{4}+\mathrm{1} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{8}×\mathrm{9}×\mathrm{17}}{\mathrm{6}}\:=\:\mathrm{204}\:. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
$${yes}\:{you}\:{are}\:{right} \\ $$$${numbers}\:{of}\:{square}\:{of}\:{side}\:{a}\rightarrow\mathrm{64} \\ $$$${nos}\:{of}\:{sauare}\:{of}\:{side}\:\mathrm{2}{a}\rightarrow\mathrm{49} \\ $$$${nos}\:{of}\:{square}\:{of}\:{side}\:\mathrm{3}{a}\rightarrow\mathrm{36} \\ $$$${nos}\:{of}\:{square}\:{of}\:{side}\:\mathrm{4}{a}\rightarrow\mathrm{25} \\ $$$${nos}\:{of}\:{square}\:{of}\:{side}\:\mathrm{5}{a}\rightarrow\mathrm{16} \\ $$$${nos}\:{of}\:{swuare}\:{of}\:{sidd}\:\mathrm{6}{a}\rightarrow\mathrm{9} \\ $$$${nos}\:{of}\:{square}\:{of}\:{side}\:\mathrm{7}{a}\rightarrow\mathrm{4} \\ $$$${nos}\:{of}\:{square}\:{of}\:{side}\:\mathrm{8}{a}\rightarrow\mathrm{1} \\ $$
Commented by malwaan last updated on 09/Sep/18
$$\mathrm{thanks} \\ $$