Menu Close

How-many-terms-in-the-geometric-progression-1-1-1-1-21-1-331-will-be-needed-so-that-the-sum-of-the-first-n-terms-is-greather-than-20-




Question Number 99603 by bemath last updated on 22/Jun/20
How many terms in the geometric  progression 1, 1.1, 1.21,1.331,...  will be needed so that the sum of  the first n terms is greather than 20?
Howmanytermsinthegeometricprogression1,1.1,1.21,1.331,willbeneededsothatthesumofthefirstntermsisgreatherthan20?
Commented by john santu last updated on 22/Jun/20
The sequence is a geometric progression  with  { ((a=1)),((r=1.1)) :}  we want to find the smallest value of  n such that S_n  > 20  ⇒S_n  = ((a(1−r^n ))/(1−r)) = ((1.(1−(1.1)^n )/(1−1.1)) > 20  ((1−(1.1)^n )/(−0.1)) > 20 ; (1.1)^n −1 > 2  (1.1)^n  > 3 ; n > ((ln 3)/(ln 1.1)) ; n > 11.526  and therefore the smallest number   value of n is 12 ■
Thesequenceisageometricprogressionwith{a=1r=1.1wewanttofindthesmallestvalueofnsuchthatSn>20Sn=a(1rn)1r=1.(1(1.1)n11.1>201(1.1)n0.1>20;(1.1)n1>2(1.1)n>3;n>ln3ln1.1;n>11.526andthereforethesmallestnumbervalueofnis12◼
Commented by bemath last updated on 22/Jun/20
thank you both
thankyouboth
Answered by Rio Michael last updated on 22/Jun/20
S_n  = ((a(r^n −1))/(r−1))  S_n  = (((1.1)^n −1)/(1.1−1)) = (((1.1)^n −1)/(0.1))  for S_n  > 20, ⇒ (((1.1)^n −1)/(0.1)) > 20 ⇒ (1.1)^n  > 3  n log (1.1) > log 3  ⇒ n > 11.52 , but n ∈ Z ⇒  n = 12.
Sn=a(rn1)r1Sn=(1.1)n11.11=(1.1)n10.1forSn>20,(1.1)n10.1>20(1.1)n>3nlog(1.1)>log3n>11.52,butnZn=12.

Leave a Reply

Your email address will not be published. Required fields are marked *