Menu Close

How-many-ways-are-there-to-arrange-the-letters-of-the-word-VISITING-if-no-two-I-s-are-adjacent-




Question Number 124826 by bramlexs22 last updated on 06/Dec/20
 How many ways are there to arrange   the letters of the word ′ VISITING′  if no two I′s are adjacent ?
$$\:{How}\:{many}\:{ways}\:{are}\:{there}\:{to}\:{arrange}\: \\ $$$${the}\:{letters}\:{of}\:{the}\:{word}\:'\:{VISITING}' \\ $$$${if}\:{no}\:{two}\:{I}'{s}\:{are}\:{adjacent}\:? \\ $$
Answered by mr W last updated on 06/Dec/20
Method I  arrange at first the five other letters  and then the three I′s in 6 positions:  □V□S□T□N□G□  5!×C_3 ^6 =2400    Method II  arrange at first the three I′s and  then the five other letters:  □I■I■I□  □ =zero or more other letters  ■ =one or more other letters  (1+x+x^2 +..._(□) )^2 (x+x^2 +x^3 +..._(■) )^2   =(x^2 /((1−x)^4 ))  =x^2 Σ_(k=0) ^∞ C_3 ^(k+3) x^k   coef. of term x^5 :  k=3 ⇒C_3 ^6   ⇒C_3 ^6 ×5!=2400
$${Method}\:{I} \\ $$$${arrange}\:{at}\:{first}\:{the}\:{five}\:{other}\:{letters} \\ $$$${and}\:{then}\:{the}\:{three}\:{I}'{s}\:{in}\:\mathrm{6}\:{positions}: \\ $$$$\Box\mathrm{V}\Box\mathrm{S}\Box\mathrm{T}\Box\mathrm{N}\Box\mathrm{G}\Box \\ $$$$\mathrm{5}!×{C}_{\mathrm{3}} ^{\mathrm{6}} =\mathrm{2400} \\ $$$$ \\ $$$${Method}\:{II} \\ $$$${arrange}\:{at}\:{first}\:{the}\:{three}\:{I}'{s}\:{and} \\ $$$${then}\:{the}\:{five}\:{other}\:{letters}: \\ $$$$\Box\mathrm{I}\blacksquare\mathrm{I}\blacksquare\mathrm{I}\Box \\ $$$$\Box\:={zero}\:{or}\:{more}\:{other}\:{letters} \\ $$$$\blacksquare\:={one}\:{or}\:{more}\:{other}\:{letters} \\ $$$$\left(\underset{\Box} {\mathrm{1}+{x}+{x}^{\mathrm{2}} +…}\right)^{\mathrm{2}} \left(\underset{\blacksquare} {{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…}\right)^{\mathrm{2}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} } \\ $$$$={x}^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${coef}.\:{of}\:{term}\:{x}^{\mathrm{5}} : \\ $$$${k}=\mathrm{3}\:\Rightarrow{C}_{\mathrm{3}} ^{\mathrm{6}} \\ $$$$\Rightarrow{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{5}!=\mathrm{2400} \\ $$
Commented by john_santu last updated on 06/Dec/20
great method II
$${great}\:{method}\:{II} \\ $$
Commented by malwan last updated on 06/Dec/20
I want to master method II  like you mrW  thank you
$${I}\:{want}\:{to}\:{master}\:{method}\:{II} \\ $$$${like}\:{you}\:{mrW} \\ $$$${thank}\:{you} \\ $$
Commented by mr W last updated on 06/Dec/20
it′s a very powerful method, try to  apply it!
$${it}'{s}\:{a}\:{very}\:{powerful}\:{method},\:{try}\:{to} \\ $$$${apply}\:{it}! \\ $$
Answered by john_santu last updated on 06/Dec/20
Commented by bramlexs22 last updated on 06/Dec/20
great!
$${great}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *