Menu Close

how-many-ways-can-the-word-MOGGOMBABA-be-arranged-hence-find-S-of-a-sequence-a-ar-ar-2-in-integral-1-2-2-




Question Number 33230 by Rio Mike last updated on 13/Apr/18
how many ways can the word       MOGGOMBABA   be arranged hence find S_∞  of a   sequence a,ar,ar^2  in integral     1,(√2) , 2,...
$${how}\:{many}\:{ways}\:{can}\:{the}\:{word}\: \\ $$$$\:\:\:\:{MOGGOMBABA}\: \\ $$$${be}\:{arranged}\:{hence}\:{find}\:{S}_{\infty} \:{of}\:{a}\: \\ $$$${sequence}\:{a},{ar},{ar}^{\mathrm{2}} \:{in}\:{integral}\: \\ $$$$\:\:\mathrm{1},\sqrt{\mathrm{2}}\:,\:\mathrm{2},… \\ $$
Answered by Joel578 last updated on 14/Apr/18
(1) Word “MOGGOMBABA”          can be arranged in = ((10!)/(2! 2! 2! 2! 2!)) = 362880 ways    (2) 1, (√2), 2, 2(√2), 4, ...          a = 1, r = (√2)          Since r > 1 hence S_∞  diverge
$$\left(\mathrm{1}\right)\:\mathrm{Word}\:“{MOGGOMBABA}'' \\ $$$$\:\:\:\:\:\:\:\:\mathrm{can}\:\mathrm{be}\:\mathrm{arranged}\:\mathrm{in}\:=\:\frac{\mathrm{10}!}{\mathrm{2}!\:\mathrm{2}!\:\mathrm{2}!\:\mathrm{2}!\:\mathrm{2}!}\:=\:\mathrm{362880}\:\mathrm{ways} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{1},\:\sqrt{\mathrm{2}},\:\mathrm{2},\:\mathrm{2}\sqrt{\mathrm{2}},\:\mathrm{4},\:… \\ $$$$\:\:\:\:\:\:\:\:{a}\:=\:\mathrm{1},\:{r}\:=\:\sqrt{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Since}\:{r}\:>\:\mathrm{1}\:\mathrm{hence}\:{S}_{\infty} \:\mathrm{diverge} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *