Question Number 114343 by toa last updated on 18/Sep/20
$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{we}\:\mathrm{place}\:\mathrm{5}\:\mathrm{identical} \\ $$$$\mathrm{books}\:\mathrm{and}\:\mathrm{another}\:\mathrm{6}\:\mathrm{identical}\:\mathrm{books} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{shelf}? \\ $$
Commented by bemath last updated on 18/Sep/20
$$=\:\frac{\mathrm{11}!}{\mathrm{5}!.\mathrm{6}!} \\ $$
Commented by toa last updated on 18/Sep/20
$$\mathrm{a}\:\mathrm{little}\:\mathrm{bit}\:\mathrm{of}\:\mathrm{explanation}\:\mathrm{sir}. \\ $$$$\mathrm{i}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{logic}\:\mathrm{behind}\:\mathrm{the}\:\mathrm{solution}. \\ $$
Commented by JDamian last updated on 18/Sep/20
Repeated permutations expression
Commented by toa last updated on 18/Sep/20
Thank you sir for the explanation