Menu Close

How-many-ways-to-arrange-letters-using-letters-in-the-word-OKINKO-a-1260-b-1160-c-980-d-880-e-720-




Question Number 121851 by bemath last updated on 12/Nov/20
How many ways to arrange letters   using letters in the word OKINKO  (a) 1260     (b) 1160    (c) 980  (d) 880        (e) 720
HowmanywaystoarrangelettersusinglettersinthewordOKINKO(a)1260(b)1160(c)980(d)880(e)720
Commented by liberty last updated on 12/Nov/20
case(1) :1−alphabet ⇒C_1 ^4  = 4  case(2): 2−alphabet → { ((OO,KK = 2)),((OK,KO=2 )),((OI,ON,KI,KN,IN=2!×5=10)) :}  case(3):3−aphabet  → { ((OOK=((3!)/(2!)) = 3 ,OKK=((3!)/2)=3)),((OO→ { (I),(N) :} = 2×((3!)/(2!)) = 6 ; KK→ { (I),(N) :}= 2×((3!)/(2!))=6 )),((OK→ { (I),(N) :}=2×3!=12 )) :}  case(4): 4−alphabet  → { ((OOKK = ((4!)/(2!.2!)) = 6 )),((OOK { (I),(N) :} = 2×((4!)/(2!)) = 24 )),((OKK { (I),(N) :}= 2×((4!)/(2!)) = 24 )),((OKIN = 4! = 24 )) :}  case(5):5−alphabet  → { ((OOKK { (I),(N) :}=2×((5!)/(2!.2!)) = 60)),((OKKNI = ((5!)/(2!)) = 60 )),((OOKNI = ((5!)/(2!)) = 60 )) :}  case(6) : 6−alphabet = ((6!)/(2!.2!)) = 180  Totally = 18+30+78+180+180  360+108+18  486.0
case(1):1alphabetC14=4case(2):2alphabet{OO,KK=2OK,KO=2OI,ON,KI,KN,IN=2!×5=10case(3):3aphabet{OOK=3!2!=3,OKK=3!2=3OO{IN=2×3!2!=6;KK{IN=2×3!2!=6OK{IN=2×3!=12case(4):4alphabet{OOKK=4!2!.2!=6OOK{IN=2×4!2!=24OKK{IN=2×4!2!=24OKIN=4!=24case(5):5alphabet{OOKK{IN=2×5!2!.2!=60OKKNI=5!2!=60OOKNI=5!2!=60case(6):6alphabet=6!2!.2!=180Totally=18+30+78+180+180360+108+18486.0

Leave a Reply

Your email address will not be published. Required fields are marked *