Menu Close

How-may-I-prove-the-following-theorem-a-b-2-ab-Thank-you-




Question Number 47476 by hassentimol last updated on 10/Nov/18
How may I prove the following theorem ?       ((a + b)/2)   ≥  (√( ab  ))    Thank you
HowmayIprovethefollowingtheorem?\boldsymbola+\boldsymbolb2\boldsymbolabThankyou
Commented by prakash jain last updated on 11/Nov/18
This is true only for a,b≥0
Thisistrueonlyfora,b0
Answered by Joel578 last updated on 11/Nov/18
Assume a, b ∈ R, then (√a) , (√b) ∈ R  Observe that for all (√a) , (√b) ∈ R  ((√a) − (√b))^2  ≥ 0  ⇔ a − 2(√(ab)) + b ≥ 0  ⇔ a + b ≥ 2(√(ab))  ⇔ ((a + b)/2) ≥ (√(ab))  Hence, proved
Assumea,bR,thena,bRObservethatforalla,bR(ab)20a2ab+b0a+b2aba+b2abHence,proved
Commented by hassentimol last updated on 11/Nov/18
  Thank you sir !  It is also very helpful !
Thankyousir!Itisalsoveryhelpful!
Answered by …. last updated on 10/Nov/18
since (a−b)^2 ≥0  ⇒a^2 +b^2 −2ab≥0  ⇒a^2 +b^2 −2ab+4ab≥0+4ab  ⇒a^2 +b^2 +2ab≥4ab  ⇒(a+b)^2 ≥4ab  ⇒(a+b)≥2(√(ab))  ⇒((a+b)/2) ≥(√(ab))      ((/)/)
since(ab)20a2+b22ab0a2+b22ab+4ab0+4aba2+b2+2ab4ab(a+b)24ab(a+b)2aba+b2ab
Commented by hassentimol last updated on 11/Nov/18
  Thank you sir.  It is very helpful !
Thankyousir.Itisveryhelpful!

Leave a Reply

Your email address will not be published. Required fields are marked *