Menu Close

How-to-calculate-n-using-gamma-function-n-R-




Question Number 63447 by minh2001 last updated on 04/Jul/19
How to calculate ⌈(n)   using gamma function  ∀n∈R
$${How}\:{to}\:{calculate}\:\lceil\left({n}\right)\: \\ $$$${using}\:{gamma}\:{function} \\ $$$$\forall{n}\in{R} \\ $$
Commented by minh2001 last updated on 04/Jul/19
I can′t remember it until   now
$${I}\:{can}'{t}\:{remember}\:{it}\:{until}\: \\ $$$${now} \\ $$
Commented by mathmax by abdo last updated on 04/Jul/19
we have Γ(x)=∫_0 ^∞  t^(x−1) e^(−t)  dt for x>0 ⇒Γ(n)=∫_0 ^∞  t^(n−1) e^(−t)  dt  and
$${we}\:{have}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} \:{dt}\:{for}\:{x}>\mathrm{0}\:\Rightarrow\Gamma\left({n}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{n}−\mathrm{1}} {e}^{−{t}} \:{dt}\:\:{and} \\ $$
Answered by MJS last updated on 04/Jul/19
Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt
$$\Gamma\left({x}\right)=\underset{\mathrm{0}} {\overset{\infty} {\int}}{t}^{{x}−\mathrm{1}} \mathrm{e}^{−{t}} {dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *