Question Number 14130 by Joel577 last updated on 28/May/17
$$\mathrm{How}\:\mathrm{to}\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{if} \\ $$$$\frac{\mathrm{5}\:−\:\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{sin}\:\theta}\:\:\geqslant\:\mathrm{2}{k}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\pi \\ $$
Commented by Joel577 last updated on 28/May/17
$$\frac{\mathrm{5}\:−\:\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{sin}\:\theta}\:\geqslant\:\mathrm{2}{k} \\ $$$$\frac{\mathrm{4}\:+\:\mathrm{2sin}^{\mathrm{2}} \:\theta}{\mathrm{sin}\:\theta}\:\geqslant\:\mathrm{2}{k} \\ $$$$\mathrm{sin}\:\theta\:\mathrm{is}\:\mathrm{minimum}\:\mathrm{when}\:\theta\:=\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{so}\:{k}\:=\:\mathrm{3} \\ $$$$\mathrm{Am}\:\mathrm{I}\:\mathrm{right}? \\ $$
Commented by prakash jain last updated on 28/May/17
$$\mathrm{sin}\:\theta\:\mathrm{is}\:\mathrm{actually}\:\mathrm{maximum}\:\mathrm{when} \\ $$$$\theta=\frac{\pi}{\mathrm{2}} \\ $$
Commented by prakash jain last updated on 28/May/17
$${f}\left(\theta\right)=\frac{\mathrm{4}\:+\:\mathrm{2sin}^{\mathrm{2}} \:\theta}{\mathrm{sin}\:\theta}\: \\ $$$${f}'\left(\theta\right)=\mathrm{cos}\:\theta\left(\mathrm{2}−\mathrm{4cosec}^{\mathrm{2}} \theta\right) \\ $$$${f}'\left(\theta\right)=\mathrm{0} \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{2}} \\ $$$${f}''\left(\theta\right)=−\mathrm{2sin}\:\theta+\mathrm{8cosec}^{\mathrm{3}} \theta−\mathrm{4cosec}\:\theta \\ $$$${f}''\left(\frac{\pi}{\mathrm{2}}\right)=−\mathrm{2}+\mathrm{8}−\mathrm{4}>\mathrm{0} \\ $$$${f}\left(\frac{\pi}{\mathrm{2}}\right)\:\mathrm{is}\:\mathrm{local}\:\mathrm{minima}\:\mathrm{for}\:{f}\left(\theta\right) \\ $$$${f}\left(\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{4}+\mathrm{2}}{\mathrm{1}}=\mathrm{6}\Rightarrow{k}=\mathrm{3} \\ $$
Commented by Joel577 last updated on 29/May/17
$${thank}\:{you}\:{very}\:{much} \\ $$
Answered by ajfour last updated on 28/May/17
$$\mathrm{4}+\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)\geqslant\mathrm{2}{k}\mathrm{sin}\:\theta \\ $$$$\mathrm{4}+\mathrm{2sin}\:^{\mathrm{2}} \theta−\mathrm{2}{k}\mathrm{sin}\:\theta\geqslant\mathrm{0} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \theta−{k}\mathrm{sin}\:\theta+\mathrm{2}\geqslant\mathrm{0} \\ $$$$\Rightarrow{for}\:\theta=\mathrm{0},\pi\:\:\:;\:\:{k}={any}\:{real}\:{number} \\ $$$$\Rightarrow\:{k}\leqslant\frac{\mathrm{2}+\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta} \\ $$$${let}\:{f}\left(\theta\right)=\frac{\mathrm{2}+\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:{f}\:'\left(\theta\right)=\frac{\mathrm{2sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:\theta−\mathrm{cos}\:\theta\left(\mathrm{2}+\mathrm{sin}\:^{\mathrm{2}} \theta\right)}{\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\:\:\:\:=\frac{\mathrm{cos}\:\theta\left(\mathrm{sin}\:^{\mathrm{2}} \theta−\mathrm{2}\right)}{\mathrm{sin}^{\mathrm{2}} \:\theta}\: \\ $$$${f}\:'\left(\theta\right)>\mathrm{0}\:{for}\:\frac{\pi}{\mathrm{2}}<\theta<\pi \\ $$$${while}\:{f}\:'\left(\theta\right)<\mathrm{0}\:{for}\:\mathrm{0}<\theta<\pi \\ $$$${local}\:{minima}\:{at}\:{x}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:{f}\left(\theta\right)\:{is}\:{minimum}\:{for}\:{f}\:'\left(\theta\right)=\mathrm{0} \\ $$$${or}\:\:\mathrm{cos}\:\theta=\mathrm{0},\:\:\theta=\frac{\pi}{\mathrm{2}}. \\ $$$${f}\left(\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{2}+\mathrm{1}}{\mathrm{1}}=\mathrm{3} \\ $$$${k}_{{max}} =\:{minimum}\:{of}\:{f}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$${k}_{{max}} =\mathrm{3}\:. \\ $$
Commented by prakash jain last updated on 28/May/17
$$\mathrm{Please}\:\mathrm{see}\:\mathrm{my}\:\mathrm{comment}\:\mathrm{I}\:\mathrm{think} \\ $$$$\mathrm{minimum}\:\mathrm{is}\:\mathrm{6}. \\ $$
Commented by ajfour last updated on 28/May/17
$${thank}\:{you}\:{Mr}.\:{Prakash}. \\ $$
Commented by Joel577 last updated on 29/May/17
$${thank}\:{you}\:{very}\:{much} \\ $$