Menu Close

how-to-justify-that-sin-x-7pi-2-cos-x-




Question Number 120244 by zahaku last updated on 30/Oct/20
how to justify  that sin (x−((7π)/2) )= cos x
$${how}\:{to}\:{justify}\:\:{that}\:\mathrm{sin}\:\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\:\right)=\:\mathrm{cos}\:{x} \\ $$
Commented by zahaku last updated on 30/Oct/20
sin (x−((7π)/2) )=−sin (2π+(x+((3π)/2) )  ?
$$\mathrm{sin}\:\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\:\right)=−\mathrm{sin}\:\left(\mathrm{2}\pi+\left({x}+\frac{\mathrm{3}\pi}{\mathrm{2}}\:\right)\:\:?\right. \\ $$
Commented by Aziztisffola last updated on 30/Oct/20
((7π)/2)≡−(π/2)(mod 2π)  x−((7π)/2)≡(x+(π/2))(mod 2π)   sin(x+(π/2))=cos x
$$\frac{\mathrm{7}\pi}{\mathrm{2}}\equiv−\frac{\pi}{\mathrm{2}}\left(\mathrm{mod}\:\mathrm{2}\pi\right) \\ $$$${x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\equiv\left({x}+\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{mod}\:\mathrm{2}\pi\right) \\ $$$$\:\mathrm{sin}\left({x}+\frac{\pi}{\mathrm{2}}\right)=\mathrm{cos}\:{x} \\ $$
Answered by benjo_mathlover last updated on 30/Oct/20
⇒sin (x−((7π)/2))=−sin (2π+(x+((3π)/2)))  = −sin (x+((3π)/2))  =−[ sin (((3π)/2))cos x+cos (((3π)/2))sin x ]  = −(−cos x+0)=cos x
$$\Rightarrow\mathrm{sin}\:\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\right)=−\mathrm{sin}\:\left(\mathrm{2}\pi+\left({x}+\frac{\mathrm{3}\pi}{\mathrm{2}}\right)\right) \\ $$$$=\:−\mathrm{sin}\:\left({x}+\frac{\mathrm{3}\pi}{\mathrm{2}}\right) \\ $$$$=−\left[\:\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)\mathrm{cos}\:{x}+\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)\mathrm{sin}\:{x}\:\right] \\ $$$$=\:−\left(−\mathrm{cos}\:{x}+\mathrm{0}\right)=\mathrm{cos}\:{x} \\ $$
Answered by TANMAY PANACEA last updated on 30/Oct/20
sin(x−((7π)/2))  =−sin(((7π)/2)−x)  =−(−cosx)  [here 7(odd number)×(π/2)−x ] lies in 4th quadrant  so (−ve) sign  =cosx
$${sin}\left({x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\right) \\ $$$$=−{sin}\left(\frac{\mathrm{7}\pi}{\mathrm{2}}−{x}\right) \\ $$$$=−\left(−{cosx}\right)\:\:\left[{here}\:\mathrm{7}\left({odd}\:{number}\right)×\frac{\pi}{\mathrm{2}}−{x}\:\right]\:{lies}\:{in}\:\mathrm{4}{th}\:{quadrant}\:\:\boldsymbol{{so}}\:\left(−\boldsymbol{{ve}}\right)\:\boldsymbol{{sign}} \\ $$$$={cosx} \\ $$
Answered by mathmax by abdo last updated on 30/Oct/20
sin(x−((7π)/2)) =sin(x−((8π−π)/2))=sin(x−4π+(π/2))  =sin(x+(π/2)) =cosx   (−4π is period)
$$\mathrm{sin}\left(\mathrm{x}−\frac{\mathrm{7}\pi}{\mathrm{2}}\right)\:=\mathrm{sin}\left(\mathrm{x}−\frac{\mathrm{8}\pi−\pi}{\mathrm{2}}\right)=\mathrm{sin}\left(\mathrm{x}−\mathrm{4}\pi+\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{sin}\left(\mathrm{x}+\frac{\pi}{\mathrm{2}}\right)\:=\mathrm{cosx}\:\:\:\left(−\mathrm{4}\pi\:\mathrm{is}\:\mathrm{period}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *