Menu Close

How-to-proof-f-X-Y-f-is-1-to-1-f-E-f-F-f-E-F-




Question Number 155586 by aaaspots last updated on 02/Oct/21
How to proof     f:X→Y  f is 1 to 1 ⇐⇒ f(E)\f(F)=f(E\F)
$${How}\:{to}\:{proof}\:\:\:\:\:{f}:{X}\rightarrow{Y} \\ $$$${f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1}\:\Leftarrow\Rightarrow\:{f}\left({E}\right)\backslash{f}\left({F}\right)={f}\left({E}\backslash{F}\right) \\ $$
Answered by mindispower last updated on 04/Oct/21
by Double inclusion  let E,F bee subset oF X  let y∈F(E\F)⇒∃! a∈E\F such f(a)=y  a∈E\F⇒f(a)∈f(E),f(a)∉f(F) since f is injective  ⇒f(a)∈F(E)\F(F)⇒f(E)\f(F)⊆F(E\F)  let z∈f(E\F)⇒∃! b∈E\F ∣ f(b)=z  ⇒f(b)∈f(E),f(b)∉f(F)    because if f(b)∈f(F)  suppose f(b)∈f(F)⇒∃ a∈F f(a)=f(b)⇒a=b by injectivity  a=b,b∈F absurd since b∈E\F  ⇒z∈f(E)\f(F)  ⇒f(E\F)⊆f(E)\f(F)  ⇒f(E\F)=f(E\F)
$${by}\:{Double}\:{inclusion} \\ $$$${let}\:{E},{F}\:{bee}\:{subset}\:{oF}\:{X} \\ $$$${let}\:{y}\in{F}\left({E}\backslash{F}\right)\Rightarrow\exists!\:{a}\in{E}\backslash{F}\:{such}\:{f}\left({a}\right)={y} \\ $$$${a}\in{E}\backslash{F}\Rightarrow{f}\left({a}\right)\in{f}\left({E}\right),{f}\left({a}\right)\notin{f}\left({F}\right)\:{since}\:{f}\:{is}\:{injective} \\ $$$$\Rightarrow{f}\left({a}\right)\in{F}\left({E}\right)\backslash{F}\left({F}\right)\Rightarrow{f}\left({E}\right)\backslash{f}\left({F}\right)\subseteq{F}\left({E}\backslash{F}\right) \\ $$$${let}\:{z}\in{f}\left({E}\backslash{F}\right)\Rightarrow\exists!\:{b}\in{E}\backslash{F}\:\mid\:{f}\left({b}\right)={z} \\ $$$$\Rightarrow{f}\left({b}\right)\in{f}\left({E}\right),{f}\left({b}\right)\notin{f}\left({F}\right)\:\:\:\:{because}\:{if}\:{f}\left({b}\right)\in{f}\left({F}\right) \\ $$$${suppose}\:{f}\left({b}\right)\in{f}\left({F}\right)\Rightarrow\exists\:{a}\in{F}\:{f}\left({a}\right)={f}\left({b}\right)\Rightarrow{a}={b}\:{by}\:{injectivity} \\ $$$${a}={b},{b}\in{F}\:{absurd}\:{since}\:{b}\in{E}\backslash{F} \\ $$$$\Rightarrow{z}\in{f}\left({E}\right)\backslash{f}\left({F}\right) \\ $$$$\Rightarrow{f}\left({E}\backslash{F}\right)\subseteq{f}\left({E}\right)\backslash{f}\left({F}\right) \\ $$$$\Rightarrow{f}\left({E}\backslash{F}\right)={f}\left({E}\backslash{F}\right) \\ $$$$ \\ $$
Commented by aaaspots last updated on 04/Oct/21
   how about 1 to 1⇐  f(E\F)=f(E)\f(F)
$$\:\:\:{how}\:{about}\:\mathrm{1}\:{to}\:\mathrm{1}\Leftarrow\:\:{f}\left({E}\backslash{F}\right)={f}\left({E}\right)\backslash{f}\left({F}\right)\:\: \\ $$
Commented by mindispower last updated on 04/Oct/21
not true if we tack F=∅ empty set  by definition f(∅)=∅  ⇒∀ f∈f(X→Y) ∀E∈P(X)  f is 1 to 1
$${not}\:{true}\:{if}\:{we}\:{tack}\:{F}=\varnothing\:{empty}\:{set} \\ $$$${by}\:{definition}\:{f}\left(\varnothing\right)=\varnothing \\ $$$$\Rightarrow\forall\:{f}\in{f}\left({X}\rightarrow{Y}\right)\:\forall{E}\in{P}\left({X}\right) \\ $$$${f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$
Commented by aaaspots last updated on 07/Oct/21
after the third lines I still understand
$${after}\:{the}\:{third}\:{lines}\:{I}\:{still}\:{understand} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *