Menu Close

how-to-solve-x-1-1-3-x-3-1-3-x-5-1-3-0-




Question Number 85822 by jagoll last updated on 25/Mar/20
how to solve   ((x−1))^(1/(3  ))  + ((x−3))^(1/(3  ))  + ((x−5))^(1/(3  ))  = 0
$$\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\: \\ $$$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{3}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{5}}\:=\:\mathrm{0}\: \\ $$
Commented by jagoll last updated on 25/Mar/20
thank mr
$$\mathrm{thank}\:\mathrm{mr}\: \\ $$
Answered by john santu last updated on 25/Mar/20
Answered by TANMAY PANACEA. last updated on 25/Mar/20
when a+b+c=0  a^3 +b^3 +c^3 =3abc  (x−1)+(x−3)+(x−5)=3(x−1)^(1/3) (x−3)^(1/3) (x−5)^(1/3)   3(x−3)=3{(x−1)(x−3)(x−5)}^(1/3)   (x−3)^3 =(x−1)(x−3)(x−5)  (x−3){x^2 −6x+9−(x−1)(x−5)}=0  (x−3)(x^2 −6x+9−x^2 +6x−5)=0  x=3
$${when}\:{a}+{b}+{c}=\mathrm{0} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{3}{abc} \\ $$$$\left({x}−\mathrm{1}\right)+\left({x}−\mathrm{3}\right)+\left({x}−\mathrm{5}\right)=\mathrm{3}\left({x}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \left({x}−\mathrm{3}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \left({x}−\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{3}\left({x}−\mathrm{3}\right)=\mathrm{3}\left\{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{5}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left({x}−\mathrm{3}\right)^{\mathrm{3}} =\left({x}−\mathrm{1}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{5}\right) \\ $$$$\left({x}−\mathrm{3}\right)\left\{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}−\left({x}−\mathrm{1}\right)\left({x}−\mathrm{5}\right)\right\}=\mathrm{0} \\ $$$$\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}−{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{5}\right)=\mathrm{0} \\ $$$${x}=\mathrm{3} \\ $$
Commented by jagoll last updated on 25/Mar/20
thank mr
$$\mathrm{thank}\:\mathrm{mr}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *