Menu Close

how-we-can-calclate-triple-factorial-




Question Number 96749 by student work last updated on 04/Jun/20
how we can calclate triple factorial?
howwecancalclatetriplefactorial?
Answered by Rio Michael last updated on 04/Jun/20
The tripple factorial is defined as    n!!! = n(n−3)(n−6)...3,  n(n−3)(n−6)...4∗1  or n(n−3)(n−6)...5∗2  depending on the numbers congruency  so n!^((a))  should be defined as the product of numbers congruent to n(mod a)  as examples :   8 (mod 3) ≡ 5 (mod 3) ≡ 2 (mod 3)  n!^((a))  =n(n−a)(n−2a)...(m +2a)(m + a)m ,where m is   the smallest possible number allowed by the factorial.
Thetripplefactorialisdefinedasn!!!=n(n3)(n6)3,n(n3)(n6)41orn(n3)(n6)52dependingonthenumberscongruencyson!(a)shouldbedefinedastheproductofnumberscongruentton(moda)asexamples:8(mod3)5(mod3)2(mod3)n!(a)=n(na)(n2a)(m+2a)(m+a)m,wheremisthesmallestpossiblenumberallowedbythefactorial.

Leave a Reply

Your email address will not be published. Required fields are marked *