Menu Close

I-0-1-1-x-x-2-x-2-1-2-dx-find-tan-I-sec-I-




Question Number 96679 by  M±th+et+s last updated on 03/Jun/20
I=∫_0 ^1 ((1−x)/(x^2 +(x^2 +1)^2 ))dx  find    tan(I)+sec(I)
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${find}\:\:\:\:{tan}\left({I}\right)+{sec}\left({I}\right) \\ $$
Answered by mathmax by abdo last updated on 03/Jun/20
I =∫_0 ^1  ((1−x)/(x^2  +(x^2  +1)^2 ))dx ⇒I =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  ((xdx)/(x^2  +(x^2  +1)^2 ))=H−K  ∫_0 ^1  ((xdx)/(x^2  +(x^2  +1)^2 )) =∫_0 ^1  ((xdx)/(x^2  +1+(x^2 +1)^2 −1)) =_(x^2 +1=u)    ∫_1 ^2    (du/(2(u+u^2 −1)))  =(1/2) ∫_1 ^2  (du/(u^2  +u−1))  u^2 +u−1=0→Δ=1+4 =5 ⇒u_1 =((−1+(√5))/2) and u_2 =((−1−(√5))/2)  ∫_1 ^2  (du/(u^2  +u−1)) =(1/( (√5)))∫_1 ^2  ((1/(u−u_1 ))−(1/(u−u_2 )))du =(1/( (√5)))[ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^2   =(1/( (√5))){ln∣((2−u_1 )/(2−u_2 ))∣−ln∣((1−u_1 )/(1−u_2 ))∣} =(1/( (√5))){ln∣((2−((−1+(√5))/2))/(2+((1+(√5))/2)))∣−ln∣((1−((−1+(√5))/2))/(1+((1+(√5))/2)))∣} ⇒  ∫_0 ^1  ((xdx)/(x^2  +(x^2 +1)^2 ))dx=(1/(2(√5))){ln∣((5−(√5))/(5+(√5)))∣−ln∣((3−(√5))/(3+(√5)))∣}=K  H =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) ?  we have ∫_0 ^∞   (dx/(x^2  +(x^2  +1)^2 ))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) +∫_1 ^(+∞)  (dx/(x^2  +(x^2  +1)^2 )) (→x=(1/t))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  (dt/(t^2 ((1/t^2 ) +((1/t^2 )+1)^2 )))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  (dt/(1+(((1+t^2 )^2 )/t^2 ))) =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 ))−∫_0 ^1  ((t^2  dt)/(t^2  +(1+t^2 )^2 )) ⇒  ∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) =∫_0 ^∞   (dx/(x^2  +(x^2  +1)^2 )) +∫_0 ^1  ((x^2  dx)/(x^2  +(1+x^2 )^2 ))  ....be continued...
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−\mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{H}−\mathrm{K} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}\:=_{\mathrm{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{u}} \:\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{\mathrm{du}}{\mathrm{2}\left(\mathrm{u}+\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} \:+\mathrm{u}−\mathrm{1}} \\ $$$$\mathrm{u}^{\mathrm{2}} +\mathrm{u}−\mathrm{1}=\mathrm{0}\rightarrow\Delta=\mathrm{1}+\mathrm{4}\:=\mathrm{5}\:\Rightarrow\mathrm{u}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{u}_{\mathrm{2}} =\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} \:+\mathrm{u}−\mathrm{1}}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\int_{\mathrm{1}} ^{\mathrm{2}} \:\left(\frac{\mathrm{1}}{\mathrm{u}−\mathrm{u}_{\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{u}−\mathrm{u}_{\mathrm{2}} }\right)\mathrm{du}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\mathrm{ln}\mid\frac{\mathrm{u}−\mathrm{u}_{\mathrm{1}} }{\mathrm{u}−\mathrm{u}_{\mathrm{2}} }\mid\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left\{\mathrm{ln}\mid\frac{\mathrm{2}−\mathrm{u}_{\mathrm{1}} }{\mathrm{2}−\mathrm{u}_{\mathrm{2}} }\mid−\mathrm{ln}\mid\frac{\mathrm{1}−\mathrm{u}_{\mathrm{1}} }{\mathrm{1}−\mathrm{u}_{\mathrm{2}} }\mid\right\}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left\{\mathrm{ln}\mid\frac{\mathrm{2}−\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}{\mathrm{2}+\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\mid−\mathrm{ln}\mid\frac{\mathrm{1}−\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}{\mathrm{1}+\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\mid\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}\left\{\mathrm{ln}\mid\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{5}+\sqrt{\mathrm{5}}}\mid−\mathrm{ln}\mid\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{3}+\sqrt{\mathrm{5}}}\mid\right\}=\mathrm{K} \\ $$$$\mathrm{H}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:?\:\:\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\left(\rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\:+\left(\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\mathrm{1}+\frac{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{t}^{\mathrm{2}} }}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:+\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:….\mathrm{be}\:\mathrm{continued}… \\ $$
Commented by 1549442205 last updated on 04/Jun/20
I=∫_0 ^1 ((1−x)/(x^2 +(x^2 +1)^2 ))dx  find    tan(I)+sec(I)  J=∫(dx/(x^2 +(x^2 +1)^2 )) =_(x=tant) ∫(((1+tan^2 t)dt)/(tan^2 t+(tan^2 t+1)^2 ))  =∫(dt/(1+tan^2 t+1−(1/(tan^2 t+1))))=∫(dt/((1/(cos^2 t))+1−cos^2 t))  =∫((cos^2 tdt)/(1+(sint.cost)^2 ))=∫((2(1+cos2t)dt)/((2sint.cost)^2 +4))=  ∫((2dt)/(sin^2 2t+4))+∫((dsin2t)/(sin^2 2t+4))=M+((sin2t)/2).arcsin(((sin2t)/2))=  M+(x/(1+x^2 )).arcsin(x/(1+x^2 ))  M=∫((2dt)/(sin^2 2t+4))=2∫(dt/(((1−cos4t)/2)+4))=−4∫(dt/(cos4t−9))  =_(u=tan2t) −2∫(du/((1+u^2 )(((1−u^2 )/(1+u^2 ))−9)))  =∫((−2du)/(1−u^2 −9(1+u^2 )))=∫(du/(5u^2 +4))=(1/5)∫(du/(u^2 +((2/( (√5))))^2 ))  =(1/5)[(((√5)u)/2).arcsin((((√5)u)/2))]=(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))  Hence,J=(x/(1+x^2 ))arcsin(x/(1+x^2 ))+(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))  K=∫((xdx)/(x^2 +(x^2 +1)^2 )) =_(u=x^2 +1) ∫(du/(u^2 +u−1))=∫(du/((u+(1/2))^2 −(((√5)/2))^2 ))  =(1/( (√5)))ln∣((u+(1/2)−((√5)/2))/(u+(1/2)+((√5)/2)))∣=(1/( (√5)))ln∣((2x^2 +3−(√5))/(2x^2 +3+(√5)))∣  Therefore,F(x)=J+N=(x/(1+x^2 )).arcsin(x/(1+x^2 ))+(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))+(1/( (√5)))ln∣((2x^2 +3−(√5))/(2x^2 +3+(√5)))∣+C  F(1)=(1/2).(π/6)+0+(1/( (√5))).ln(((√5)−1)/( (√5)+1))+C  F(0)=(1/( (√5))).ln((3−(√5))/(3+(√5)))+C⇒I=F(1)−F(0)=(π/(12))+(1/( (√5)))ln(((√5)−1)/( (√5)+1))−(1/( (√5)))ln((3−(√5))/(3+(√5)))  =(π/(12))+(2/( (√5)))ln(((√5)+1)/2)≈0.6922083288  So,tan(I)+sec(I)≈2.128029314
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${find}\:\:\:\:{tan}\left({I}\right)+{sec}\left({I}\right) \\ $$$$\mathrm{J}=\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\underset{\mathrm{x}=\mathrm{tant}} {=}\int\frac{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt}}{\mathrm{tan}^{\mathrm{2}} \mathrm{t}+\left(\mathrm{tan}^{\mathrm{2}} \mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\int\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \mathrm{t}+\mathrm{1}}}=\int\frac{\mathrm{dt}}{\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \mathrm{t}}+\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{t}} \\ $$$$=\int\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{tdt}}{\mathrm{1}+\left(\mathrm{sint}.\mathrm{cost}\right)^{\mathrm{2}} }=\int\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{cos2t}\right)\mathrm{dt}}{\left(\mathrm{2sint}.\mathrm{cost}\right)^{\mathrm{2}} +\mathrm{4}}= \\ $$$$\int\frac{\mathrm{2dt}}{\mathrm{sin}^{\mathrm{2}} \mathrm{2t}+\mathrm{4}}+\int\frac{\mathrm{dsin2t}}{\mathrm{sin}^{\mathrm{2}} \mathrm{2t}+\mathrm{4}}=\mathrm{M}+\frac{\mathrm{sin2t}}{\mathrm{2}}.\mathrm{arcsin}\left(\frac{\mathrm{sin2t}}{\mathrm{2}}\right)= \\ $$$$\mathrm{M}+\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\mathrm{arcsin}\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{M}=\int\frac{\mathrm{2dt}}{\mathrm{sin}^{\mathrm{2}} \mathrm{2t}+\mathrm{4}}=\mathrm{2}\int\frac{\mathrm{dt}}{\frac{\mathrm{1}−\mathrm{cos4t}}{\mathrm{2}}+\mathrm{4}}=−\mathrm{4}\int\frac{\mathrm{dt}}{\mathrm{cos4t}−\mathrm{9}} \\ $$$$\underset{\mathrm{u}=\mathrm{tan2t}} {=}−\mathrm{2}\int\frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\left(\frac{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }−\mathrm{9}\right)} \\ $$$$=\int\frac{−\mathrm{2du}}{\mathrm{1}−\mathrm{u}^{\mathrm{2}} −\mathrm{9}\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}=\int\frac{\mathrm{du}}{\mathrm{5u}^{\mathrm{2}} +\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\left[\frac{\sqrt{\mathrm{5}}\mathrm{u}}{\mathrm{2}}.\mathrm{arcsin}\left(\frac{\sqrt{\mathrm{5}}\mathrm{u}}{\mathrm{2}}\right)\right]=\frac{\mathrm{1}}{\mathrm{5}}.\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }.\mathrm{arcsin}\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{Hence},\mathrm{J}=\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{arcsin}\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}}.\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }.\mathrm{arcsin}\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{K}=\int\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\underset{\mathrm{u}=\mathrm{x}^{\mathrm{2}} +\mathrm{1}} {=}\int\frac{\mathrm{du}}{\mathrm{u}^{\mathrm{2}} +\mathrm{u}−\mathrm{1}}=\int\frac{\mathrm{du}}{\left(\mathrm{u}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\mid\frac{\mathrm{u}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}{\mathrm{u}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}\mid=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\mid\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{3}+\sqrt{\mathrm{5}}}\mid \\ $$$$\mathrm{Therefore},\mathrm{F}\left(\mathrm{x}\right)=\mathrm{J}+\mathrm{N}=\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\mathrm{arcsin}\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}}.\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }.\mathrm{arcsin}\frac{\sqrt{\mathrm{5}}\mathrm{x}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\mid\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{3}+\sqrt{\mathrm{5}}}\mid+\mathrm{C} \\ $$$$\mathrm{F}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi}{\mathrm{6}}+\mathrm{0}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}.\mathrm{ln}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}+\mathrm{C} \\ $$$$\mathrm{F}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}.\mathrm{ln}\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{3}+\sqrt{\mathrm{5}}}+\mathrm{C}\Rightarrow\mathrm{I}=\mathrm{F}\left(\mathrm{1}\right)−\mathrm{F}\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{12}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{3}+\sqrt{\mathrm{5}}} \\ $$$$=\frac{\pi}{\mathrm{12}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\mathrm{ln}\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{6922083288} \\ $$$$\mathrm{So},\mathrm{tan}\left(\mathrm{I}\right)+\mathrm{sec}\left(\mathrm{I}\right)\approx\mathrm{2}.\mathrm{128029314} \\ $$
Commented by  M±th+et+s last updated on 04/Jun/20
thanks very nice
$${thanks}\:{very}\:{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *