I-0-1-1-x-x-2-x-2-1-2-dx-find-tan-I-sec-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 96679 by M±th+et+s last updated on 03/Jun/20 I=∫011−xx2+(x2+1)2dxfindtan(I)+sec(I) Answered by mathmax by abdo last updated on 03/Jun/20 I=∫011−xx2+(x2+1)2dx⇒I=∫01dxx2+(x2+1)2−∫01xdxx2+(x2+1)2=H−K∫01xdxx2+(x2+1)2=∫01xdxx2+1+(x2+1)2−1=x2+1=u∫12du2(u+u2−1)=12∫12duu2+u−1u2+u−1=0→Δ=1+4=5⇒u1=−1+52andu2=−1−52∫12duu2+u−1=15∫12(1u−u1−1u−u2)du=15[ln∣u−u1u−u2∣]12=15{ln∣2−u12−u2∣−ln∣1−u11−u2∣}=15{ln∣2−−1+522+1+52∣−ln∣1−−1+521+1+52∣}⇒∫01xdxx2+(x2+1)2dx=125{ln∣5−55+5∣−ln∣3−53+5∣}=KH=∫01dxx2+(x2+1)2?wehave∫0∞dxx2+(x2+1)2=∫01dxx2+(x2+1)2+∫1+∞dxx2+(x2+1)2(→x=1t)=∫01dxx2+(x2+1)2−∫01dtt2(1t2+(1t2+1)2)=∫01dxx2+(x2+1)2−∫01dt1+(1+t2)2t2=∫01dxx2+(x2+1)2−∫01t2dtt2+(1+t2)2⇒∫01dxx2+(x2+1)2=∫0∞dxx2+(x2+1)2+∫01x2dxx2+(1+x2)2….becontinued… Commented by 1549442205 last updated on 04/Jun/20 I=∫011−xx2+(x2+1)2dxfindtan(I)+sec(I)J=∫dxx2+(x2+1)2=x=tant∫(1+tan2t)dttan2t+(tan2t+1)2=∫dt1+tan2t+1−1tan2t+1=∫dt1cos2t+1−cos2t=∫cos2tdt1+(sint.cost)2=∫2(1+cos2t)dt(2sint.cost)2+4=∫2dtsin22t+4+∫dsin2tsin22t+4=M+sin2t2.arcsin(sin2t2)=M+x1+x2.arcsinx1+x2M=∫2dtsin22t+4=2∫dt1−cos4t2+4=−4∫dtcos4t−9=u=tan2t−2∫du(1+u2)(1−u21+u2−9)=∫−2du1−u2−9(1+u2)=∫du5u2+4=15∫duu2+(25)2=15[5u2.arcsin(5u2)]=15.5x1−x2.arcsin5x1−x2Hence,J=x1+x2arcsinx1+x2+15.5x1−x2.arcsin5x1−x2K=∫xdxx2+(x2+1)2=u=x2+1∫duu2+u−1=∫du(u+12)2−(52)2=15ln∣u+12−52u+12+52∣=15ln∣2x2+3−52x2+3+5∣Therefore,F(x)=J+N=x1+x2.arcsinx1+x2+15.5x1−x2.arcsin5x1−x2+15ln∣2x2+3−52x2+3+5∣+CF(1)=12.π6+0+15.ln5−15+1+CF(0)=15.ln3−53+5+C⇒I=F(1)−F(0)=π12+15ln5−15+1−15ln3−53+5=π12+25ln5+12≈0.6922083288So,tan(I)+sec(I)≈2.128029314 Commented by M±th+et+s last updated on 04/Jun/20 thanksverynice Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: using-the-limit-defination-find-the-area-of-f-x-cos-x-0-pi-2-Next Next post: Given-0-1-f-x-dx-2018-0-1-2-2018-1-1-3-2018-2-1-2019-2018-2018-0-1-g-x-dx-2018-0-1-2-2 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.