Menu Close

I-0-1-1-x-x-2-x-2-1-2-dx-find-tan-I-sec-I-




Question Number 96679 by  M±th+et+s last updated on 03/Jun/20
I=∫_0 ^1 ((1−x)/(x^2 +(x^2 +1)^2 ))dx  find    tan(I)+sec(I)
I=011xx2+(x2+1)2dxfindtan(I)+sec(I)
Answered by mathmax by abdo last updated on 03/Jun/20
I =∫_0 ^1  ((1−x)/(x^2  +(x^2  +1)^2 ))dx ⇒I =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  ((xdx)/(x^2  +(x^2  +1)^2 ))=H−K  ∫_0 ^1  ((xdx)/(x^2  +(x^2  +1)^2 )) =∫_0 ^1  ((xdx)/(x^2  +1+(x^2 +1)^2 −1)) =_(x^2 +1=u)    ∫_1 ^2    (du/(2(u+u^2 −1)))  =(1/2) ∫_1 ^2  (du/(u^2  +u−1))  u^2 +u−1=0→Δ=1+4 =5 ⇒u_1 =((−1+(√5))/2) and u_2 =((−1−(√5))/2)  ∫_1 ^2  (du/(u^2  +u−1)) =(1/( (√5)))∫_1 ^2  ((1/(u−u_1 ))−(1/(u−u_2 )))du =(1/( (√5)))[ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^2   =(1/( (√5))){ln∣((2−u_1 )/(2−u_2 ))∣−ln∣((1−u_1 )/(1−u_2 ))∣} =(1/( (√5))){ln∣((2−((−1+(√5))/2))/(2+((1+(√5))/2)))∣−ln∣((1−((−1+(√5))/2))/(1+((1+(√5))/2)))∣} ⇒  ∫_0 ^1  ((xdx)/(x^2  +(x^2 +1)^2 ))dx=(1/(2(√5))){ln∣((5−(√5))/(5+(√5)))∣−ln∣((3−(√5))/(3+(√5)))∣}=K  H =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) ?  we have ∫_0 ^∞   (dx/(x^2  +(x^2  +1)^2 ))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) +∫_1 ^(+∞)  (dx/(x^2  +(x^2  +1)^2 )) (→x=(1/t))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  (dt/(t^2 ((1/t^2 ) +((1/t^2 )+1)^2 )))  =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) −∫_0 ^1  (dt/(1+(((1+t^2 )^2 )/t^2 ))) =∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 ))−∫_0 ^1  ((t^2  dt)/(t^2  +(1+t^2 )^2 )) ⇒  ∫_0 ^1  (dx/(x^2  +(x^2  +1)^2 )) =∫_0 ^∞   (dx/(x^2  +(x^2  +1)^2 )) +∫_0 ^1  ((x^2  dx)/(x^2  +(1+x^2 )^2 ))  ....be continued...
I=011xx2+(x2+1)2dxI=01dxx2+(x2+1)201xdxx2+(x2+1)2=HK01xdxx2+(x2+1)2=01xdxx2+1+(x2+1)21=x2+1=u12du2(u+u21)=1212duu2+u1u2+u1=0Δ=1+4=5u1=1+52andu2=15212duu2+u1=1512(1uu11uu2)du=15[lnuu1uu2]12=15{ln2u12u2ln1u11u2}=15{ln21+522+1+52ln11+521+1+52}01xdxx2+(x2+1)2dx=125{ln555+5ln353+5}=KH=01dxx2+(x2+1)2?wehave0dxx2+(x2+1)2=01dxx2+(x2+1)2+1+dxx2+(x2+1)2(x=1t)=01dxx2+(x2+1)201dtt2(1t2+(1t2+1)2)=01dxx2+(x2+1)201dt1+(1+t2)2t2=01dxx2+(x2+1)201t2dtt2+(1+t2)201dxx2+(x2+1)2=0dxx2+(x2+1)2+01x2dxx2+(1+x2)2.becontinued
Commented by 1549442205 last updated on 04/Jun/20
I=∫_0 ^1 ((1−x)/(x^2 +(x^2 +1)^2 ))dx  find    tan(I)+sec(I)  J=∫(dx/(x^2 +(x^2 +1)^2 )) =_(x=tant) ∫(((1+tan^2 t)dt)/(tan^2 t+(tan^2 t+1)^2 ))  =∫(dt/(1+tan^2 t+1−(1/(tan^2 t+1))))=∫(dt/((1/(cos^2 t))+1−cos^2 t))  =∫((cos^2 tdt)/(1+(sint.cost)^2 ))=∫((2(1+cos2t)dt)/((2sint.cost)^2 +4))=  ∫((2dt)/(sin^2 2t+4))+∫((dsin2t)/(sin^2 2t+4))=M+((sin2t)/2).arcsin(((sin2t)/2))=  M+(x/(1+x^2 )).arcsin(x/(1+x^2 ))  M=∫((2dt)/(sin^2 2t+4))=2∫(dt/(((1−cos4t)/2)+4))=−4∫(dt/(cos4t−9))  =_(u=tan2t) −2∫(du/((1+u^2 )(((1−u^2 )/(1+u^2 ))−9)))  =∫((−2du)/(1−u^2 −9(1+u^2 )))=∫(du/(5u^2 +4))=(1/5)∫(du/(u^2 +((2/( (√5))))^2 ))  =(1/5)[(((√5)u)/2).arcsin((((√5)u)/2))]=(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))  Hence,J=(x/(1+x^2 ))arcsin(x/(1+x^2 ))+(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))  K=∫((xdx)/(x^2 +(x^2 +1)^2 )) =_(u=x^2 +1) ∫(du/(u^2 +u−1))=∫(du/((u+(1/2))^2 −(((√5)/2))^2 ))  =(1/( (√5)))ln∣((u+(1/2)−((√5)/2))/(u+(1/2)+((√5)/2)))∣=(1/( (√5)))ln∣((2x^2 +3−(√5))/(2x^2 +3+(√5)))∣  Therefore,F(x)=J+N=(x/(1+x^2 )).arcsin(x/(1+x^2 ))+(1/5).(((√5)x)/(1−x^2 )).arcsin(((√5)x)/(1−x^2 ))+(1/( (√5)))ln∣((2x^2 +3−(√5))/(2x^2 +3+(√5)))∣+C  F(1)=(1/2).(π/6)+0+(1/( (√5))).ln(((√5)−1)/( (√5)+1))+C  F(0)=(1/( (√5))).ln((3−(√5))/(3+(√5)))+C⇒I=F(1)−F(0)=(π/(12))+(1/( (√5)))ln(((√5)−1)/( (√5)+1))−(1/( (√5)))ln((3−(√5))/(3+(√5)))  =(π/(12))+(2/( (√5)))ln(((√5)+1)/2)≈0.6922083288  So,tan(I)+sec(I)≈2.128029314
I=011xx2+(x2+1)2dxfindtan(I)+sec(I)J=dxx2+(x2+1)2=x=tant(1+tan2t)dttan2t+(tan2t+1)2=dt1+tan2t+11tan2t+1=dt1cos2t+1cos2t=cos2tdt1+(sint.cost)2=2(1+cos2t)dt(2sint.cost)2+4=2dtsin22t+4+dsin2tsin22t+4=M+sin2t2.arcsin(sin2t2)=M+x1+x2.arcsinx1+x2M=2dtsin22t+4=2dt1cos4t2+4=4dtcos4t9=u=tan2t2du(1+u2)(1u21+u29)=2du1u29(1+u2)=du5u2+4=15duu2+(25)2=15[5u2.arcsin(5u2)]=15.5x1x2.arcsin5x1x2Hence,J=x1+x2arcsinx1+x2+15.5x1x2.arcsin5x1x2K=xdxx2+(x2+1)2=u=x2+1duu2+u1=du(u+12)2(52)2=15lnu+1252u+12+52∣=15ln2x2+352x2+3+5Therefore,F(x)=J+N=x1+x2.arcsinx1+x2+15.5x1x2.arcsin5x1x2+15ln2x2+352x2+3+5+CF(1)=12.π6+0+15.ln515+1+CF(0)=15.ln353+5+CI=F(1)F(0)=π12+15ln515+115ln353+5=π12+25ln5+120.6922083288So,tan(I)+sec(I)2.128029314
Commented by  M±th+et+s last updated on 04/Jun/20
thanks very nice
thanksverynice

Leave a Reply

Your email address will not be published. Required fields are marked *