Menu Close

I-0-L-2-Rz-2-d-2-z-2-d-2-z-2-R-2-dz-Find-I-




Question Number 47737 by ajfour last updated on 14/Nov/18
  I = ∫_0 ^(  L/2) ((Rz^2 )/((d^2 +z^2 )(√(d^2 +z^2 −R^2 )))) dz   Find I .
I=0L/2Rz2(d2+z2)d2+z2R2dzFindI.
Answered by MJS last updated on 14/Nov/18
R∫(z^2 /((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))dz=  =R∫(dz/( (√(z^2 +d^2 −R^(2 ) ))))−d^2 R∫(dz/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))    R∫(dz/( (√(z^2 +d^2 −R^(2 ) ))))=       [t=(z/( (√(d^2 −R^2 )))) → dz=(√(d^2 −R^2 ))dt]  =R∫(dt/( (√(t^2 +1))))=Rln (t+(√(t^2 +1))) =Rln ((z+(√(z^2 +d^2 −R^2 )))/( (√(d^2 −R^2 ))))    −d^2 R∫(dz/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))=       [z=(√(d^2 −R^2 ))tan u → u=arctan (z/( (√(d^2 −R^2 )))); dz=(√(d^2 −R^2 ))sec^2  u du]  =−d^2 R∫(((√(d^2 −R^2 ))sec^2  u)/((d^2 +(d^2 −R^2 )tan^2  u)(√(d^2 −R^2 +(d^2 −R^2 )tan^2  u))))du=  =−d^2 R∫((sec u)/(d^2 +(d^2 −R^2 )tan^2  u))du=−d^2 R∫((cos u)/(d^2 −R^2 sin^2  u))du=       [v=sin u → du=(dv/(cos u))]  =−d^2 R∫(dv/(d^2 −R^2 v^2 ))=−d^2 R∫(dv/((d+Rv)(d−Rv)))=  =(dR/2)∫(dv/(d−Rv))−(dR/2)∫(dv/(d+Rv))=  =(d/2)ln ((d−Rv)/(d+Rv)) =(d/2)ln ((d−Rsin u)/(d+Rsin u))=  =(d/2)ln ((d−Rsin arctan (z/( (√(d^2 −R^2 )))))/(d+Rsin arctan (z/( (√(d^2 −R^2 ))))))=  =(d/2)ln ((d−R(z/( (√(z^2 +d^2 −R^2 )))))/(d+R(z/( (√(z^2 +d^2 −R^2 )))))) =(d/2)ln ((d(√(z^2 +d^2 −R^2 ))−Rz)/(d(√(z^2 +d^2 −R^2 ))+Rz))    ∫((Rz^2 )/((z^2 +d^2 )(√(z^2 +d^2 −R^2 ))))dz=  Rln ∣((z+(√(z^2 +d^2 −R^2 )))/( (√(d^2 −R^2 ))))∣ +(d/2)ln ∣((Rz−d(√(z^2 +d^2 −R^2 )))/(Rz+d(√(z^2 +d^2 −R^2 ))))∣ +C
Rz2(z2+d2)z2+d2R2dz==Rdzz2+d2R2d2Rdz(z2+d2)z2+d2R2Rdzz2+d2R2=[t=zd2R2dz=d2R2dt]=Rdtt2+1=Rln(t+t2+1)=Rlnz+z2+d2R2d2R2d2Rdz(z2+d2)z2+d2R2=[z=d2R2tanuu=arctanzd2R2;dz=d2R2sec2udu]=d2Rd2R2sec2u(d2+(d2R2)tan2u)d2R2+(d2R2)tan2udu==d2Rsecud2+(d2R2)tan2udu=d2Rcosud2R2sin2udu=[v=sinudu=dvcosu]=d2Rdvd2R2v2=d2Rdv(d+Rv)(dRv)==dR2dvdRvdR2dvd+Rv==d2lndRvd+Rv=d2lndRsinud+Rsinu==d2lndRsinarctanzd2R2d+Rsinarctanzd2R2==d2lndRzz2+d2R2d+Rzz2+d2R2=d2lndz2+d2R2Rzdz2+d2R2+RzRz2(z2+d2)z2+d2R2dz=Rlnz+z2+d2R2d2R2+d2lnRzdz2+d2R2Rz+dz2+d2R2+C
Commented by MJS last updated on 14/Nov/18
it only works for d>R
itonlyworksford>R
Commented by MJS last updated on 14/Nov/18
I have no time to check it for typos and other  minor mistakes but this is the path to solve it
Ihavenotimetocheckitfortyposandotherminormistakesbutthisisthepathtosolveit
Commented by ajfour last updated on 14/Nov/18
Thank you Sir, understood the  method, quite natural.
ThankyouSir,understoodthemethod,quitenatural.
Commented by ajfour last updated on 14/Nov/18
of course, it should be so, please  resolve our issue; if at all this  integral arises or not ?  Please view Q.47728
ofcourse,itshouldbeso,pleaseresolveourissue;ifatallthisintegralarisesornot?PleaseviewQ.47728

Leave a Reply

Your email address will not be published. Required fields are marked *