I-0-lnx-x-2-2x-4-dx-put-x-1-3-tan-I-0-pi-2-ln-3-tan-1-3-sec-2-3-sec-2-d-I-1-3-0-pi-2-ln-3-tan-1-d-I-1-3-0-pi-2-ln-3-sin-cos- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 118934 by Riteshgoyal last updated on 20/Oct/20 I=∫0∞lnxx2+2x+4dxputx+1=3tanθI=∫0π/2ln(3tanθ−1)3(sec2θ)3sec2θdθI=13∫0π/2ln(3tanθ−1)dθI=13∫0π/2ln(3sinθ−cosθ)−lncosθdθI=13∫0π/2ln(sin(θ−π6)+ln2−lncosθdθA=∫−26∣g(x)∣dx⇒letg(p)=0⇒f(0)=p=2A=∫−22−g(x)dx+∫26g(x)dx⇒putx=f(t)A=∫−10−tf′(t)dt+∫01tf(t)dtA=∫−10−3t3−3tdt+∫013t3+3tdtA=2(3t44+3t22)01=92lnx=1x⇒xlnx=1(letx=α)∫1α1x−lnxdx=∫αalnx−1xdx⇒lnx−xlnx+x]1α=xlnx−x−lnx]αa⇒lnα−1+α−1=alna−a−lna−1+α+lnα⇒alna−a−lna=−1⇒alna−lna=a−1⇒a=es(t)=12∣OA→×OB→∣s(t)=12∣(2,2,1)×(t,1,t+1)∣s(t)=12∣(2t+1),(−2−t),(2−2t)∣f(x)=14∫0x(2t+1)2+(t+2)2+(2−2t)2dtf(x)=14∫0x9t2+9dt=3x3+9x4A=14∫06(3x3+9x)dx=3x4+18x216]06A=3.63(6+1)16=5672 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-118935Next Next post: show-by-recurrence-that-for-n-N-2-6n-5-3-2n-is-divisible-by-11- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.