Menu Close

I-0-lnx-x-2-2x-4-dx-put-x-1-3-tan-I-0-pi-2-ln-3-tan-1-3-sec-2-3-sec-2-d-I-1-3-0-pi-2-ln-3-tan-1-d-I-1-3-0-pi-2-ln-3-sin-cos-




Question Number 118934 by Riteshgoyal last updated on 20/Oct/20
    I=∫_0 ^∞  ((lnx)/(x^2 +2x+4)) dx  put x+1=(√3) tanθ  I=∫_0 ^(π/2)  ((ln((√3) tanθ−1))/(3(sec^2 θ))) (√3) sec^2 θdθ  I=(1/( (√3)))∫_0 ^(π/2)   ln((√3)tanθ−1) dθ  I=(1/( (√3)))∫_0 ^(π/2) ln((√3)sinθ−cosθ)−lncosθ dθ  I=(1/( (√3)))∫_0 ^(π/2) ln(sin(θ−(π/6))+ln2−lncosθ dθ      A=∫_(−2) ^6 ∣g(x)∣ dx  ⇒let g(p)=0⇒ f(0)=p=2  A=∫_(−2) ^2 −g(x) dx+∫_2 ^6 g(x) dx  ⇒put x=f(t)  A=∫_(−1) ^0 −tf′(t) dt+∫_0 ^1 t f(t) dt  A=∫_(−1) ^0 −3t^3 −3t dt+∫_0 ^1 3t^3 +3t dt  A=2(((3t^4 )/4)+((3t^2 )/2))_0 ^1 =(9/2)  lnx=(1/x)⇒xlnx=1(let x=α)  ∫_1 ^α (1/x)−lnx dx=∫_α ^a lnx−(1/x) dx  ⇒lnx−xlnx+x]_1 ^α =xlnx−x−lnx]_α ^a   ⇒lnα−1+α−1=alna−a−lna−1+α                                                     +lnα  ⇒alna−a−lna=−1  ⇒alna−lna=a−1⇒a=e      s(t)=(1/2)∣OA^→ ×OB^→ ∣  s(t)=(1/2)∣(2,2,1)×(t,1,t+1)∣  s(t)=(1/2)∣(2t+1),(−2−t),(2−2t)∣  f(x)=(1/4)∫_0 ^x (2t+1)^2 +(t+2)^2 +(2−2t)^2  dt  f(x)=(1/4)∫_0 ^x 9t^2 +9 dt=((3x^3 +9x)/4)  A=(1/4)∫_0 ^6 (3x^3 +9x)dx=((3x^4 +18x^2 )/(16))]_0 ^6   A=((3.6^3 (6+1))/(16))=((567)/2)
I=0lnxx2+2x+4dxputx+1=3tanθI=0π/2ln(3tanθ1)3(sec2θ)3sec2θdθI=130π/2ln(3tanθ1)dθI=130π/2ln(3sinθcosθ)lncosθdθI=130π/2ln(sin(θπ6)+ln2lncosθdθA=26g(x)dxletg(p)=0f(0)=p=2A=22g(x)dx+26g(x)dxputx=f(t)A=10tf(t)dt+01tf(t)dtA=103t33tdt+013t3+3tdtA=2(3t44+3t22)01=92lnx=1xxlnx=1(letx=α)1α1xlnxdx=αalnx1xdxlnxxlnx+x]1α=xlnxxlnx]αalnα1+α1=alnaalna1+α+lnαalnaalna=1alnalna=a1a=es(t)=12OA×OBs(t)=12(2,2,1)×(t,1,t+1)s(t)=12(2t+1),(2t),(22t)f(x)=140x(2t+1)2+(t+2)2+(22t)2dtf(x)=140x9t2+9dt=3x3+9x4A=1406(3x3+9x)dx=3x4+18x216]06A=3.63(6+1)16=5672

Leave a Reply

Your email address will not be published. Required fields are marked *