I-0-pi-1-pi-2-x-2-1-1-x-2-lnx-dx-put-pix-tanA-x-tanB-I-0-pi-2-ln-tanA-lnpi-dA-0-pi-2-ln-tanB-dB-I-pi-2-lnpi- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 113766 by Riteshgoyal last updated on 15/Sep/20 I=∫0∞(π1+π2x2−11+x2)lnxdxputπx=tanA,x=tanBI=∫0π2(ln(tanA)−lnπ)dA−∫0π/2ln(tanB)dBI=−π2lnπ Answered by mathmax by abdo last updated on 16/Sep/20 I=∫0∞(π1+π2x2−11+x2)lnxdx=π∫0∞lnx1+π2x2−∫0∞lnx1+x2dx∫0∞lnx1+x2dx=0(putx=1u)π∫0∞ln(x)1+(πx)2dx=πx=tπ∫0∞ln(tπ)1+t2×dtπ=∫0∞lnt−lnπ1+t2dt=∫0∞lnt1+t2dt−ln(π)×π2=0−π2ln(π)⇒I=−π2ln(π) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-113767Next Next post: prove-that-tan-7-1-2-6-3-2-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.