Menu Close

I-0-pi-1-pi-2-x-2-1-1-x-2-lnx-dx-put-pix-tanA-x-tanB-I-0-pi-2-ln-tanA-lnpi-dA-0-pi-2-ln-tanB-dB-I-pi-2-lnpi-




Question Number 113766 by Riteshgoyal last updated on 15/Sep/20
  I=∫_0 ^∞ ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx  put πx=tanA, x =tanB  I=∫_0 ^(π/2)  (ln(tanA)−lnπ)dA−∫_0 ^(π/2) ln(tanB)dB  I=((−π)/2)lnπ
I=0(π1+π2x211+x2)lnxdxputπx=tanA,x=tanBI=0π2(ln(tanA)lnπ)dA0π/2ln(tanB)dBI=π2lnπ
Answered by mathmax by abdo last updated on 16/Sep/20
I =∫_0 ^∞  ((π/(1+π^2 x^2 ))−(1/(1+x^2 )))lnx dx =π∫_0 ^∞   ((lnx)/(1+π^2 x^2 )) −∫_0 ^∞  ((lnx)/(1+x^2 )) dx  ∫_0 ^∞  ((lnx)/(1+x^2 )) dx =0   (put x=(1/u))  π∫_0 ^∞  ((ln(x))/(1+(πx)^2 )) dx =_(πx =t) π  ∫_0 ^∞   ((ln((t/π)))/(1+t^2 ))×(dt/π)  =∫_0 ^∞   ((lnt−lnπ)/(1+t^2 )) dt =∫_0 ^∞  ((lnt)/(1+t^2 ))dt −ln(π)×(π/2) =0−(π/2)ln(π) ⇒  I =−(π/2)ln(π)
I=0(π1+π2x211+x2)lnxdx=π0lnx1+π2x20lnx1+x2dx0lnx1+x2dx=0(putx=1u)π0ln(x)1+(πx)2dx=πx=tπ0ln(tπ)1+t2×dtπ=0lntlnπ1+t2dt=0lnt1+t2dtln(π)×π2=0π2ln(π)I=π2ln(π)

Leave a Reply

Your email address will not be published. Required fields are marked *