Menu Close

I-0-pi-2-2304cosx-cos4x-8cos2x-15-2-dx-




Question Number 129710 by SOMEDAVONG last updated on 18/Jan/21
I=∫_0 ^(π/2) ((2304cosx)/((cos4x−8cos2x+15)^2 ))dx
I=0π22304cosx(cos4x8cos2x+15)2dx
Answered by MJS_new last updated on 18/Jan/21
2304∫((cos x)/((cos 4x −8cos 2x +15)^2 ))dx=       [t=sin x → dx=(dt/(cos x))]  =36∫(dt/((t^2 −t+1)^2 (t^2 +t+1)^2 ))=       [Ostrogradski′s Method]  =−((6t(t−1)(t+1))/((t^2 −t+1)(t^2 +t+1)))−6∫((t^2 −5)/((t^2 −t+1)(t^2 +t+1)))dt  −6∫((t^2 −5)/((t^2 −t+1)(t^2 +t+1)))dt=  =−3∫((6t−5)/(t^2 −t+1))dt+3∫((6t+5)/(t^2 +t+1))dt=  =6∫(dt/(t^2 −t+1))−9∫((2t−1)/(t^2 −t+1))dt+6∫(dt/(t^2 +t+1))+9∫((2t+1)/(t^2 +t+1))dt=  =4(√3)arctan (((√3)(2t−1))/3) −9ln (t^2 −t+1) +4(√3)arctan (((√3)(2t+1))/3) +9ln (t^2 +t+1)  ⇒ we have  2304∫_0 ^(π/2) ((cos x)/((cos 4x −8cos 2x +15)^2 ))dx=  [−((6t(t−1)(t+1))/((t^2 −t+1)(t^2 +t+1)))+4(√3)(arctan (((√3)(2t−1))/3) +arctan (((√3)(2t+1))/3))+9ln ((t^2 +t+1)/(t^2 −t+1))]_0 ^1 =  =2π(√3)+9ln 3
2304cosx(cos4x8cos2x+15)2dx=[t=sinxdx=dtcosx]=36dt(t2t+1)2(t2+t+1)2=[OstrogradskisMethod]=6t(t1)(t+1)(t2t+1)(t2+t+1)6t25(t2t+1)(t2+t+1)dt6t25(t2t+1)(t2+t+1)dt==36t5t2t+1dt+36t+5t2+t+1dt==6dtt2t+192t1t2t+1dt+6dtt2+t+1+92t+1t2+t+1dt==43arctan3(2t1)39ln(t2t+1)+43arctan3(2t+1)3+9ln(t2+t+1)wehave2304π/20cosx(cos4x8cos2x+15)2dx=[6t(t1)(t+1)(t2t+1)(t2+t+1)+43(arctan3(2t1)3+arctan3(2t+1)3)+9lnt2+t+1t2t+1]01==2π3+9ln3

Leave a Reply

Your email address will not be published. Required fields are marked *