Menu Close

I-0-pi-2-5tan-4-x-3cot-4-x-tan-4-x-cot-4-x-dx-




Question Number 144244 by SOMEDAVONG last updated on 23/Jun/21
I=∫_0 ^(π/2) ((5tan^4 x+3cot^4 x)/(tan^4 x+cot^4 x))dx=?
$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{5tan}^{\mathrm{4}} \mathrm{x}+\mathrm{3cot}^{\mathrm{4}} \mathrm{x}}{\mathrm{tan}^{\mathrm{4}} \mathrm{x}+\mathrm{cot}^{\mathrm{4}} \mathrm{x}}\mathrm{dx}=? \\ $$
Answered by Dwaipayan Shikari last updated on 23/Jun/21
=∫_0 ^(π/2) ((5tg^4 x+ct^4 x)/(tg^4 x+ct^4 x))dx=^(∫_δ ^ζ f(x)dx=∫_δ ^ζ f(ζ+δ−x)dx) ∫_0 ^(π/2) ((3tg^4 x+5cot^4 x)/(tg^4 x+ct^4 x))=I  2I=8∫_0 ^(π/2) 1dx⇒I=2π
$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{5}{tg}^{\mathrm{4}} {x}+{ct}^{\mathrm{4}} {x}}{{tg}^{\mathrm{4}} {x}+{ct}^{\mathrm{4}} {x}}{dx}\overset{\int_{\delta} ^{\zeta} {f}\left({x}\right){dx}=\int_{\delta} ^{\zeta} {f}\left(\zeta+\delta−{x}\right){dx}} {=}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{3}{tg}^{\mathrm{4}} {x}+\mathrm{5}{cot}^{\mathrm{4}} {x}}{{tg}^{\mathrm{4}} {x}+{ct}^{\mathrm{4}} {x}}={I} \\ $$$$\mathrm{2}{I}=\mathrm{8}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{1}{dx}\Rightarrow{I}=\mathrm{2}\pi \\ $$
Commented by SOMEDAVONG last updated on 24/Jun/21
Thanks sir!
$$\mathrm{Thanks}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *