Menu Close

I-0-pi-4-sin-4x-cos-2-x-tan-4-x-1-dx-




Question Number 87839 by jagoll last updated on 06/Apr/20
I = ∫_0 ^(π/4)  ((sin 4x)/(cos^2 x (√(tan^4 x+1)))) dx
I=π40sin4xcos2xtan4x+1dx
Answered by redmiiuser last updated on 06/Apr/20
(√(tan^4 x+1))  =(√(sin^4 x+cos^4 x))/cos^2 x  ((sin 4x)/( (√(sin^4 x+cos^4 x))))  =((sin 4x)/( (√((3+cos 4x)/4))))  ∫_0 ^(π/4) ((2sin 4x)/( (√(3+cos 4x))))dx  3+cos 4x=z  dz=4.sin 4x.dx  ∫_4 ^2 ((2.dz)/(4.(√z)))  =(1/2)∫_4 ^2 (dz/( (√z)))  =[(√z)]_4 ^2   =(√2)−2
tan4x+1=sin4x+cos4x/cos2xsin4xsin4x+cos4x=sin4x3+cos4x40π42sin4x3+cos4xdx3+cos4x=zdz=4.sin4x.dx422.dz4.z=1242dzz=[z]42=22
Commented by jagoll last updated on 06/Apr/20
yes sir. thank you
yessir.thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *