Menu Close

I-0-pi-4-xtg-x-dx-




Question Number 162604 by amin96 last updated on 30/Dec/21
I=∫_0 ^(π/4) xtg(x)dx=?
I=0π4xtg(x)dx=?
Answered by Ar Brandon last updated on 30/Dec/21
I=∫_0 ^(π/4) xtanxdx     =−[xln(cosx)]_0 ^(π/4) +∫_0 ^(π/4) ln(cosx)dx     =−(π/4)ln((1/( (√2))))+(G/2)−((πln2)/4)=(G/2)−((πln2)/8)
I=0π4xtanxdx=[xln(cosx)]0π4+0π4ln(cosx)dx=π4ln(12)+G2πln24=G2πln28

Leave a Reply

Your email address will not be published. Required fields are marked *