Menu Close

i-1-i-xi-i-x-x-




Question Number 153682 by EDWIN88 last updated on 09/Sep/21
 ((i)^(1/i)  )^(xi)  = i^x      x=?
$$\:\left(\sqrt[{{i}}]{{i}}\:\right)^{{xi}} \:=\:{i}^{{x}} \: \\ $$$$\:\:{x}=?\: \\ $$
Answered by MJS_new last updated on 09/Sep/21
lhs i=e^(i(π/2))  ⇒ (i)^(1/i) =e^(π/2)  ⇒ ((i)^(1/i) )^(ix) =e^(i((xπ)/2))   rhs i^x =e^(i((xπ)/2))   ⇒ x∈C
$$\mathrm{lhs}\:\mathrm{i}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \:\Rightarrow\:\sqrt[{\mathrm{i}}]{\mathrm{i}}=\mathrm{e}^{\frac{\pi}{\mathrm{2}}} \:\Rightarrow\:\left(\sqrt[{\mathrm{i}}]{\mathrm{i}}\right)^{\mathrm{i}{x}} =\mathrm{e}^{\mathrm{i}\frac{{x}\pi}{\mathrm{2}}} \\ $$$$\mathrm{rhs}\:\mathrm{i}^{{x}} =\mathrm{e}^{\mathrm{i}\frac{{x}\pi}{\mathrm{2}}} \\ $$$$\Rightarrow\:{x}\in\mathbb{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *