Question Number 172839 by DAVONG last updated on 02/Jul/22
$$\mathrm{I}=\int\frac{\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}=? \\ $$
Answered by puissant last updated on 02/Jul/22
$${I}=\int\frac{\mathrm{1}}{{lnx}}{dx}\:;\:\:{x}={e}^{{u}} \:\Rightarrow\:{dx}={e}^{{u}} {du} \\ $$$${I}=\int\frac{{e}^{{u}} }{{u}}{du}\:=\:\int\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{u}^{{n}−\mathrm{1}} }{{n}!}{du}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\left(\frac{\mathrm{1}}{{u}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{u}^{{n}−\mathrm{1}} }{{n}!}\right){du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{lnu}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{u}^{{n}} }{{n}.{n}!}+{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{ln}\left({lnx}\right)+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{ln}^{{n}} {x}}{{n}.{n}!}+{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:…….\mathscr{L}{e}\:{puissant}…… \\ $$
Commented by ghakhan last updated on 03/Jul/22
$${can}\:{you}\:{explain}\:{how}\:{did}\:{get}\:\frac{\mathrm{1}}{{u}}\:{in}\:{the}\:{third}\:{step}\:{please}? \\ $$
Commented by puissant last updated on 03/Jul/22
$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{u}^{{n}−\mathrm{1}} }{{n}!}\:\:=\:\frac{{u}^{\mathrm{0}−\mathrm{1}} }{\mathrm{0}!}\:+\:\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{u}^{{n}−\mathrm{1}} }{{n}!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{u}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{u}^{{n}−\mathrm{1}} }{{n}!}. \\ $$
Commented by DAVONG last updated on 03/Jul/22
$$\mathrm{Thanks}\:\mathrm{teacher}! \\ $$