Menu Close

I-1-lnx-dx-




Question Number 172839 by DAVONG last updated on 02/Jul/22
I=∫(1/(lnx))dx=?
I=1lnxdx=?
Answered by puissant last updated on 02/Jul/22
I=∫(1/(lnx))dx ;  x=e^u  ⇒ dx=e^u du  I=∫(e^u /u)du = ∫Σ_(n≥0) (u^(n−1) /(n!))du                         = ∫((1/u)+Σ_(n≥1) (u^(n−1) /(n!)))du                        = lnu+Σ_(n≥1) (u^n /(n.n!))+C                        = ln(lnx)+Σ_(n≥1) ((ln^n x)/(n.n!))+C               .......Le puissant......
I=1lnxdx;x=eudx=euduI=euudu=n0un1n!du=(1u+n1un1n!)du=lnu+n1unn.n!+C=ln(lnx)+n1lnnxn.n!+C.Lepuissant
Commented by ghakhan last updated on 03/Jul/22
can you explain how did get (1/u) in the third step please?
canyouexplainhowdidget1uinthethirdstepplease?
Commented by puissant last updated on 03/Jul/22
Σ_(n≥0) (u^(n−1) /(n!))  = (u^(0−1) /(0!)) + Σ_(n≥1) (u^(n−1) /(n!))                      = (1/u)+Σ_(n≥1) (u^(n−1) /(n!)).
n0un1n!=u010!+n1un1n!=1u+n1un1n!.
Commented by DAVONG last updated on 03/Jul/22
Thanks teacher!
Thanksteacher!

Leave a Reply

Your email address will not be published. Required fields are marked *