Menu Close

i-1-n-1-n-1-n-




Question Number 144323 by qaz last updated on 24/Jun/21
Σ_(i=1) ^n (((−1)^(n+1) )/n)=?
$$\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}}=? \\ $$
Answered by mathmax by abdo last updated on 25/Jun/21
A_n =Σ_(k=1) ^n  (((−1)^(k−1) )/k) ⇒A_n =Σ(....)_(k=2p) +Σ(....)_(k=2p+1)   =−Σ_(p=1) ^([(n/2) ])  (1/(2p)) +Σ_(p=0) ^([((n−1)/2)])  (1/(2p+1))  we have Σ_(p=1) ^([(n/2)])  (1/p)=H_([(n/2)])   Σ_(p=0) ^N  (1/(2p+1))=1+(1/3)+(1/5)+....+(1/(2N+1))=1+(1/2)+(1/3)+....+(1/(2N))+(1/(2N+1))  −(1/2)−(1/4)−...−(1/(2N))=H_(2N+1) −(1/2)H_N  ⇒  Σ_(p=0) ^([((n−1)/2)]) (1/(2p+1)) =H_(2[((n−1)/2)]+1) −(1/2)H_([((n−1)/2)])   ⇒  A_n =−(1/2)H_([(n/2)])    +H_(2[((n−1)/2)]+1)    −(1/2)H_([((n−1)/2)])
$$\mathrm{A}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{1}} }{\mathrm{k}}\:\Rightarrow\mathrm{A}_{\mathrm{n}} =\Sigma\left(….\right)_{\mathrm{k}=\mathrm{2p}} +\Sigma\left(….\right)_{\mathrm{k}=\mathrm{2p}+\mathrm{1}} \\ $$$$=−\sum_{\mathrm{p}=\mathrm{1}} ^{\left[\frac{\mathrm{n}}{\mathrm{2}}\:\right]} \:\frac{\mathrm{1}}{\mathrm{2p}}\:+\sum_{\mathrm{p}=\mathrm{0}} ^{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{2p}+\mathrm{1}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\sum_{\mathrm{p}=\mathrm{1}} ^{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{p}}=\mathrm{H}_{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \\ $$$$\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{N}} \:\frac{\mathrm{1}}{\mathrm{2p}+\mathrm{1}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+….+\frac{\mathrm{1}}{\mathrm{2N}+\mathrm{1}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{2N}}+\frac{\mathrm{1}}{\mathrm{2N}+\mathrm{1}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}−…−\frac{\mathrm{1}}{\mathrm{2N}}=\mathrm{H}_{\mathrm{2N}+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\mathrm{H}_{\mathrm{N}} \:\Rightarrow \\ $$$$\sum_{\mathrm{p}=\mathrm{0}} ^{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]} \frac{\mathrm{1}}{\mathrm{2p}+\mathrm{1}}\:=\mathrm{H}_{\mathrm{2}\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\mathrm{H}_{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{n}} =−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{H}_{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\:\:+\mathrm{H}_{\mathrm{2}\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1}} \:\:\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{H}_{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *