I-1-x-x-x-2-dx-I-1-x-x-x-dx-I-1-x-x-x-2-2-dx-I-1-4-x-4x-2-x-dx-I-2-1-1-2-x-2-1- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 182954 by Gamil last updated on 17/Dec/22 I=∫1xx−x2dxI=∫1⋅x(x−x)dxI=∫1x⋅x−x×22dxI=∫14x−4x⋅2xdxI=2∫1−(1−2x)2⋅1xdxI=−2∫11−(1−2x)2⋅d(1−2x)I=−2sin−1(1−2x)+CGamilALmansob Commented by Rasheed.Sindhi last updated on 17/Dec/22 QuestionshouldgoinplaceofQuestion.ANDAnswershouldgoinplaceofAnswer. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-z-z-2-3x-xy-0-show-that-d-2-z-dx-2-d-2-z-dy-2-2x-x-1-z-2-3-3-Next Next post: lim-x-e-x-2-cosx-sin-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.