Menu Close

I-4x-2-lnx-1-x-4-dx-




Question Number 124277 by SOMEDAVONG last updated on 02/Dec/20
I.∫((4x^2 lnx)/(1+x^4 ))dx=??
$$\mathrm{I}.\int\frac{\mathrm{4x}^{\mathrm{2}} \mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx}=?? \\ $$
Commented by MJS_new last updated on 02/Dec/20
((4x^2 )/(x^4 +1))=((((√2)/2)(1−i))/(x−((√2)/2)(1+i)))+((((√2)/2)(1+i))/(x−((√2)/2)(1−i)))−((((√2)/2)(1+i))/(x+((√2)/2)(1−i)))−((((√2)/2)(1−i))/(x+((√2)/2)(1+i)))  ⇒ we have to solve  a∫((ln x)/(x−b))dx  and then insert  I get a∫((ln x)/(x−b))dx=a(ln (−b) ln ∣x+b∣ −Li_2  ((x/b)+1))+C  but I′m not sure if this is right for a, b ∉R
$$\frac{\mathrm{4}{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{1}}=\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\right)}{{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right)}+\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right)}{{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\right)}−\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right)}{{x}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\right)}−\frac{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{i}\right)}{{x}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right)} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve} \\ $$$${a}\int\frac{\mathrm{ln}\:{x}}{{x}−{b}}{dx} \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{insert} \\ $$$$\mathrm{I}\:\mathrm{get}\:{a}\int\frac{\mathrm{ln}\:{x}}{{x}−{b}}{dx}={a}\left(\mathrm{ln}\:\left(−{b}\right)\:\mathrm{ln}\:\mid{x}+{b}\mid\:−\mathrm{Li}_{\mathrm{2}} \:\left(\frac{{x}}{{b}}+\mathrm{1}\right)\right)+{C} \\ $$$$\mathrm{but}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{is}\:\mathrm{right}\:\mathrm{for}\:{a},\:{b}\:\notin\mathbb{R} \\ $$
Commented by Dwaipayan Shikari last updated on 02/Dec/20
((4x^2 )/((1+x^4 )))=(2/((x^2 −i)))+(2/(x^2 +i)) =(1/( (√i)))((1/((x−(√i))))−(1/((x+(√i)))))+(1/( i(√i)))((1/(x−i(√i)))−(1/(x+i(√i))))
$$\frac{\mathrm{4}{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}=\frac{\mathrm{2}}{\left({x}^{\mathrm{2}} −{i}\right)}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} +{i}}\:=\frac{\mathrm{1}}{\:\sqrt{{i}}}\left(\frac{\mathrm{1}}{\left({x}−\sqrt{{i}}\right)}−\frac{\mathrm{1}}{\left({x}+\sqrt{{i}}\right)}\right)+\frac{\mathrm{1}}{\:{i}\sqrt{{i}}}\left(\frac{\mathrm{1}}{{x}−{i}\sqrt{{i}}}−\frac{\mathrm{1}}{{x}+{i}\sqrt{{i}}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *