Menu Close

I-am-learning-linear-algebra-and-have-a-qustion-in-regards-to-nullspace-So-Ax-0-If-A-1-1-0-0-this-is-simply-solved-for-x-x-1-x-2-by-1-1-0-0-0-0-x-1-1-c-c-




Question Number 124170 by Pengu last updated on 01/Dec/20
  I am learning linear algebra and have a  qustion in regards to nullspace.     So, Ax=0.  If A= [(1,1),(0,0) ], this is simply solved for  x= [(x_1 ),(x_2 ) ]  by:   [(1,1,0),(0,0,0) ]→x= [((−1)),(1) ]c, ∀c∈R  Since this is for all x∈R^2 , the null space  falls on a line (in this case).     My question is, in higher dimensions,  can the null space be any dimension up  to the dimension n? So, in R^4 , can the  null space be a point, line, plane, or volume?  Furthermore, can you have multiple variations  of planes, points, etc. that make up the null space?     Thanks!
Iamlearninglinearalgebraandhaveaqustioninregardstonullspace.So,\boldsymbolAx=0.If\boldsymbolA=[1100],thisissimplysolvedfor\boldsymbolx=[x1x2]by:[110000]\boldsymbolx=[11]c,cRSincethisisforall\boldsymbolxR2,thenullspacefallsonaline(inthiscase).Myquestionis,inhigherdimensions,canthenullspacebeanydimensionuptothedimensionn?So,inR4,canthenullspacebeapoint,line,plane,orvolume?Furthermore,canyouhavemultiplevariationsofplanes,points,etc.thatmakeupthenullspace?Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *