Menu Close

I-cosx-2sinx-e-2x-sinx-dx-




Question Number 150932 by maged last updated on 16/Aug/21
I=∫((cosx − 2sinx)/(e^(2x) −sinx))dx=^?
$$\mathrm{I}=\int\frac{\mathrm{cosx}\:−\:\mathrm{2sinx}}{\mathrm{e}^{\mathrm{2x}} −\mathrm{sinx}}\mathrm{dx}\overset{?} {=} \\ $$
Answered by Olaf_Thorendsen last updated on 16/Aug/21
F(x) = ∫((cosx−2sinx)/(e^(2x) −sinx)) dx  F(x) = ∫(((2e^(2x) −2sinx)−(2e^(2x) −cosx))/(e^(2x) −sinx)) dx  F(x) = ∫(2−((2e^(2x) −cosx)/(e^(2x) −sinx))) dx  F(x) = 2x−ln∣e^(2x) −sinx∣+C
$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\mathrm{cos}{x}−\mathrm{2sin}{x}}{{e}^{\mathrm{2}{x}} −\mathrm{sin}{x}}\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\frac{\left(\mathrm{2}{e}^{\mathrm{2}{x}} −\mathrm{2sin}{x}\right)−\left(\mathrm{2}{e}^{\mathrm{2}{x}} −\mathrm{cos}{x}\right)}{{e}^{\mathrm{2}{x}} −\mathrm{sin}{x}}\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\left(\mathrm{2}−\frac{\mathrm{2}{e}^{\mathrm{2}{x}} −\mathrm{cos}{x}}{{e}^{\mathrm{2}{x}} −\mathrm{sin}{x}}\right)\:{dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\mathrm{2}{x}−\mathrm{ln}\mid{e}^{\mathrm{2}{x}} −\mathrm{sin}{x}\mid+\mathrm{C} \\ $$
Commented by maged last updated on 16/Aug/21
Thank you
$$\mathrm{Thank}\:\mathrm{you}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *