Menu Close

I-cosx-2sinx-e-2x-sinx-dx-




Question Number 150932 by maged last updated on 16/Aug/21
I=∫((cosx − 2sinx)/(e^(2x) −sinx))dx=^?
I=cosx2sinxe2xsinxdx=?
Answered by Olaf_Thorendsen last updated on 16/Aug/21
F(x) = ∫((cosx−2sinx)/(e^(2x) −sinx)) dx  F(x) = ∫(((2e^(2x) −2sinx)−(2e^(2x) −cosx))/(e^(2x) −sinx)) dx  F(x) = ∫(2−((2e^(2x) −cosx)/(e^(2x) −sinx))) dx  F(x) = 2x−ln∣e^(2x) −sinx∣+C
F(x)=cosx2sinxe2xsinxdxF(x)=(2e2x2sinx)(2e2xcosx)e2xsinxdxF(x)=(22e2xcosxe2xsinx)dxF(x)=2xlne2xsinx+C
Commented by maged last updated on 16/Aug/21
Thank you
Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *