Menu Close

I-dx-x-8-x-6-J-1-x-7-x-1-x-7-dx-Calculate-I-and-J-




Question Number 165561 by LEKOUMA last updated on 03/Feb/22
I=∫(dx/(x^8 +x^6 ))  J=∫((1−x^7 )/(x(1+x^7 )))dx  Calculate I and J
I=dxx8+x6J=1x7x(1+x7)dxCalculateIandJ
Answered by MJS_new last updated on 05/Feb/22
∫(dx/(x^8 +x^6 ))=∫((1/x^6 )−(1/x^4 )+(1/x^2 )−(1/(x^2 +1)))dx=  =−(1/(5x^5 ))+(1/(3x^3 ))−(1/x)−arctan x =  =−((15x^4 −5x^2 +3)/(15x^5 ))−arctan x +C
dxx8+x6=(1x61x4+1x21x2+1)dx==15x5+13x31xarctanx==15x45x2+315x5arctanx+C
Answered by MJS_new last updated on 05/Feb/22
∫((1−x^7 )/(x(1+x^7 )))dx=−∫((x^7 −1)/(x(x+1)(x^6 −x^5 +x^4 −x^3 +x^2 −x+1)))dx=  =∫((1/x)−(2/(7(x+1)))−((2(6x^5 −5x^4 +4x^3 −3x^2 +2x−1))/(7(x^6 −x^5 +x^4 −x^3 +x^2 −x+1))))dx=  =ln x −(2/7)ln (x+1) −(2/7)ln (x^6 −x^5 +x^4 −x^3 +x^2 −x+1) =  =ln ∣x∣ −(2/7)ln ∣x^7 +1∣ +C
1x7x(1+x7)dx=x71x(x+1)(x6x5+x4x3+x2x+1)dx==(1x27(x+1)2(6x55x4+4x33x2+2x1)7(x6x5+x4x3+x2x+1))dx==lnx27ln(x+1)27ln(x6x5+x4x3+x2x+1)==lnx27lnx7+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *