Question Number 144152 by SOMEDAVONG last updated on 22/Jun/21
$$\mathrm{I}=\int\frac{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{e}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{1}}\mathrm{dx}=? \\ $$
Answered by ArielVyny last updated on 22/Jun/21
$$=\int\frac{{e}^{{x}^{\mathrm{2}} } }{{e}^{{x}^{\mathrm{2}} } +\mathrm{1}}{dx}+\int\frac{{e}^{{x}} }{{e}^{{x}^{\mathrm{2}} } +\mathrm{1}}{dx} \\ $$$${e}^{{x}^{\mathrm{2}} } ={u}\:\:\:\mathrm{2}{xe}^{{x}^{\mathrm{2}} } {dx}={du}\:\:\:{x}^{\mathrm{2}} ={ln}\left({u}\right)\:\:\:{x}=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({u}\right) \\ $$$${e}^{{x}} =\sqrt{{u}}\:\:\:\:{e}^{{x}} {dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{u}}}{du} \\ $$$$\int\frac{{ln}\left({u}\right)}{{u}+\mathrm{1}}{du}+\int\frac{\mathrm{1}}{\mathrm{2}\sqrt{{u}}}×\frac{\mathrm{1}}{{u}+\mathrm{1}}{du} \\ $$$$\int\frac{{ln}\left({u}\right)}{{u}+\mathrm{1}}{du}+\int\frac{\sqrt{{u}}}{\mathrm{2}{u}}×\frac{\mathrm{1}}{{u}+\mathrm{1}}{du} \\ $$$$\int\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} {ln}\left({u}\right)+\int\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} {u}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \int{u}^{{n}} {ln}\left({u}\right){du}+\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \int{u}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} {du} \\ $$$$\int{u}^{{n}} {ln}\left({u}\right){du}=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{u}^{{n}+\mathrm{1}} {ln}\left({u}\right)\right]−\frac{\mathrm{1}}{{n}+\mathrm{1}}\int{u}^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{u}^{{n}+\mathrm{1}} {ln}\left({u}\right)\right]−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{u}^{{n}+\mathrm{1}} \\ $$$$\int{u}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} {du}=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{5}}{u}^{{n}+\frac{\mathrm{5}}{\mathrm{2}}} \\ $$$${I}=\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{n}} \left[\frac{{u}^{{n}+\mathrm{1}} {ln}\left({u}\right)}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{u}^{{n}+\mathrm{1}} \right]+\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{5}}{u}^{} \\ $$
Answered by Canebulok last updated on 22/Jun/21
$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\int\:\:\frac{{e}^{{x}^{\mathrm{2}} } +{e}^{{x}} }{{e}^{{x}^{\mathrm{2}} } +\mathrm{1}}\:{dx}\:=\:{I} \\ $$$${We}\:{know}\:{that}, \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{e}^{{x}^{\mathrm{2}} } +\mathrm{1}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} .\left({e}^{{x}^{\mathrm{2}} } \right)^{{n}} \\ $$$${Thus}; \\ $$$$\Rightarrow\:\int\:\:\frac{{e}^{{x}^{\mathrm{2}} } +{e}^{{x}} }{{e}^{{x}^{\mathrm{2}} } +\mathrm{1}}\:{dx}\:=\:\int\:\left({e}^{{x}^{\mathrm{2}} } +{e}^{{x}} \right)\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .\left({e}^{{x}^{\mathrm{2}} } \right)^{{n}} \:{dx} \\ $$$$\Rightarrow\:{I}\:=\:\int\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} .\left({e}^{{x}^{\mathrm{2}} {n}} \right).\left({e}^{{x}^{\mathrm{2}} } +{e}^{{x}} \right)\:{dx} \\ $$$$\Rightarrow\:{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} .\left[\int\:{e}^{\left({x}^{\mathrm{2}} {n}+{x}^{\mathrm{2}} \right)} \:{dx}\:+\:\int\:{e}^{{x}^{\mathrm{2}} {n}+{x}} \:{dx}\right] \\ $$$$\Rightarrow\:{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} .\left[\frac{\sqrt{\pi}\:{erfi}\left({x}\sqrt{{n}+\mathrm{1}}\right)}{\mathrm{2}\sqrt{{n}+\mathrm{1}}}\:+\:\frac{\sqrt{\pi}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{n}}} \:{erfi}\left(\frac{\mathrm{2}{xn}+\mathrm{1}}{\mathrm{2}\sqrt{{n}}}\right)}{\mathrm{2}\sqrt{{n}}}\right]\:+\:{C} \\ $$