Menu Close

I-For-witch-value-of-the-integral-C-0-1-1-2x-2-1-x-1-dx-conveege-And-in-this-case-calculate-II-Let-x-y-x-y-2-a-Calculate-I-1-dxdy-and-




Question Number 79730 by Henri Boucatchou last updated on 27/Jan/20
I)  For witch value of α the integral   C=∫_0 ^( ∞) ((1/( (√(1+2x^2 ))))−(1/(x+1)))dx  conveege  ?  And in this case calculate α.  II)  Let Δ={(x; y)/ ∣x∣+∣y∣≤2}       a) Calculate I_1 = ∫∫_Δ dxdy   and  ∫∫_Δ ((dxdy)/((∣x∣+∣y∣)^2 +4))
I)ForwitchvalueofαtheintegralC=0(11+2x21x+1)dxconveege?Andinthiscasecalculateα.II)LetΔ={(x;y)/x+y∣⩽2}a)CalculateI1=ΔdxdyandΔdxdy(x+y)2+4
Commented by Henri Boucatchou last updated on 27/Jan/20
 Please α is here :  C=∫_0 ^( ∞) ((1/( (√(1+2x^2 ))))−(α/(1+x)))dx...
Pleaseαishere:C=0(11+2x2α1+x)dx
Answered by mind is power last updated on 28/Jan/20
f(x)=(1/( (√(1+2x^2 ))))−(1/(1+x))  continus x→∞  f(x)=(((x+1)−(√((1+2x^2 ))))/((x+1)(√(1+2x^2 ))))=((2x−x^2 )/((x+1)(√((1+2x^2 )))(x+1+(√(1+2x^2 )))))  ∼((−x^2 )/(x^3 (√2).(1+(√2))))=−(1/(x(√2)(1+(√2)))) not integrabl in+∞  C diverge  a)∫∫_Δ dxdy  x∈[−2,2]  ∣y∣<2−∣x∣  ⇒∣x∣−2≤y≤2−∣x∣  =∫_(−2) ^2 ∫_(∣x∣−2) ^(2−∣x∣) dxdy  =∫_(−2) ^2 [4−2∣x∣]dx  =2∫_0 ^2 [4−2x]dx  =16−2(4)=8  ∫∫_Δ ((dxdy)/((∣x∣+∣y∣)^2 +4))  we haveΔ=∪_(i=1) ^4 D_i   D_1 =(x,y)∣   x+y<2,D_2 x−y<2,D_3 =−x+y<2,D_4 −x−y<2∣  g(x,y)=(1/((∣x∣+∣y∣)^2 +4))  is invsriant in sense  g(_− ^+ x,_− ^+ y)=g(x,y)  D_1 =ϕ(D_2 )=ϕ′(D_3 )=ϕ′′(D_4 )  ϕ(x,y)=(x,−y)  ϕ′(x,y)=(−x,y)  ϕ′′(x,y)=(−x,−y)  goϕ^i (x,y)=g(x,h),i∈{1,2,3}  ⇒∫∫_D_i  g(x,y)dxdy=∫∫_D_j  g(x,y)dxdy,∀i,j∈{1,2,3,4}  ⇒∫∫_Δ g(x,y)dxdy=4∫∫_D_1  g(x,y)dxdy  =4∫_0 ^2 ∫_0 ^(2−x) ((dxdy)/((x+y)^2 +4))  ∫_0 ^2 ∫_0 ^(2−x) (dy/(((((x+y)/2))^2 +1)))dx=∫_0 ^2 2∫_0 ^(2−x) (1/2)(dy/(((((x+y)/2))^2 +1)))  =∫_0 ^2 2.[tan^(−1) (((x+y)/2))]_0 ^(2−x) ]dx  =2∫_0 ^2 ((π/4)−tan^− ((x/2))]  by part  =π−2∫_0 ^2 tan^(−1) ((x/2))dx=π−2[[_0 ^2 xtan^(−1) ((x/2))]−∫_0 ^2 ((2x)/(1+x^2 ))]dx  π−4tan^− (1)+2ln(5)=2ln(5)
f(x)=11+2x211+xcontinusxf(x)=(x+1)(1+2x2)(x+1)1+2x2=2xx2(x+1)(1+2x2)(x+1+1+2x2)x2x32.(1+2)=1x2(1+2)notintegrablin+Cdivergea)Δdxdyx[2,2]y∣<2x⇒∣x2y2x=22x22xdxdy=22[42x]dx=202[42x]dx=162(4)=8Δdxdy(x+y)2+4wehaveΔ=4i=1DiD1=(x,y)x+y<2,D2xy<2,D3=x+y<2,D4xy<2g(x,y)=1(x+y)2+4isinvsriantinsenseg(+x,+y)=g(x,y)D1=φ(D2)=φ(D3)=φ(D4)φ(x,y)=(x,y)φ(x,y)=(x,y)φ(x,y)=(x,y)goφi(x,y)=g(x,h),i{1,2,3}Dig(x,y)dxdy=Djg(x,y)dxdy,i,j{1,2,3,4}Δg(x,y)dxdy=4D1g(x,y)dxdy=40202xdxdy(x+y)2+40202xdy((x+y2)2+1)dx=02202x12dy((x+y2)2+1)=022.[tan1(x+y2)]02x]dx=202(π4tan(x2)]bypart=π202tan1(x2)dx=π2[[02xtan1(x2)]022x1+x2]dxπ4tan(1)+2ln(5)=2ln(5)

Leave a Reply

Your email address will not be published. Required fields are marked *