Menu Close

i-found-some-interesting-basic-question-hence-sharing-1-if-A-1-4-A-2-find-interval-2-if-A-1-4-A-2-3-y-1-A-and-A-1-4-y-4-y-1-A-A-1-4-y-




Question Number 60514 by tanmay last updated on 21/May/19
i found some interesting basic question  hence sharing...  1)if A∈[1,4]  A^2  ∈  ? ←find interval   2)if A ∈ [−1,4]  A^2  ∈ ?  3) y=(1/(A  ))  and A∈    [1,4]  y∈ ?  4)y=(1/(∣A∣))  A∈[−1,4]   y∈ ?
ifoundsomeinterestingbasicquestionhencesharing1)ifA[1,4]A2?findinterval2)ifA[1,4]A2?3)y=1AandA[1,4]y?4)y=1AA[1,4]y?
Commented by kaivan.ahmadi last updated on 22/May/19
1.  A^2 ∈[1,16]  2.  A^2 ∈[0,16]  3.  1≤A≤4⇒1≥(1/A)≥(1/4)⇒(1/4)≤y≤1  4.  if A≠0  −1≤A<0⇒0<∣A∣≤1⇒(1/(∣A∣))≥1  0<A≤4⇒(1/(∣A∣))≥(1/4)  ⇒y≥(1/4)
1.A2[1,16]2.A2[0,16]3.1A411A1414y14.ifA01A<00<∣A∣⩽11A10<A41A14y14
Commented by tanmay last updated on 22/May/19
1)let A=x  and  y=x^2   A∈[1,4]   so A^2 ∈[1,16]  2)A∈[−1,4]  from graph y=x^2    minimum value of x^2 =0  so A^2 ∈[0,16]
1)letA=xandy=x2A[1,4]soA2[1,16]2)A[1,4]fromgraphy=x2minimumvalueofx2=0soA2[0,16]
Commented by tanmay last updated on 22/May/19
Commented by tanmay last updated on 22/May/19
3)let x=A  and y=(1/A)  A∈[1,4]  (1/A)∈[0.25,1]
3)letx=Aandy=1AA[1,4]1A[0.25,1]
Commented by tanmay last updated on 22/May/19
thank you sir
thankyousir
Answered by tanmay last updated on 22/May/19
4) A=x   y=(1/(∣x∣))  when x=−1  y=(1/(∣−1∣))=1  when x=4  y=(1/4)  A∈[−1,4]  (1/([A]))∈ [1,∞) ∩ [(1/4),∞)
4)A=xy=1xwhenx=1y=11=1whenx=4y=14A[1,4]1[A][1,)[14,)
Commented by tanmay last updated on 22/May/19
Commented by MJS last updated on 22/May/19
[1, ∞)∩[(1/4), ∞) = [1, ∞)  so your conclusion is wrong. the path is ok.  (1/(∣A∣))∈[(1/4), ∞) is the right answer
[1,)[14,)=[1,)soyourconclusioniswrong.thepathisok.1A[14,)istherightanswer
Commented by tanmay last updated on 22/May/19
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *