Question Number 60514 by tanmay last updated on 21/May/19
![i found some interesting basic question hence sharing... 1)if A∈[1,4] A^2 ∈ ? ←find interval 2)if A ∈ [−1,4] A^2 ∈ ? 3) y=(1/(A )) and A∈ [1,4] y∈ ? 4)y=(1/(∣A∣)) A∈[−1,4] y∈ ?](https://www.tinkutara.com/question/Q60514.png)
Commented by kaivan.ahmadi last updated on 22/May/19
![1. A^2 ∈[1,16] 2. A^2 ∈[0,16] 3. 1≤A≤4⇒1≥(1/A)≥(1/4)⇒(1/4)≤y≤1 4. if A≠0 −1≤A<0⇒0<∣A∣≤1⇒(1/(∣A∣))≥1 0<A≤4⇒(1/(∣A∣))≥(1/4) ⇒y≥(1/4)](https://www.tinkutara.com/question/Q60556.png)
Commented by tanmay last updated on 22/May/19
![1)let A=x and y=x^2 A∈[1,4] so A^2 ∈[1,16] 2)A∈[−1,4] from graph y=x^2 minimum value of x^2 =0 so A^2 ∈[0,16]](https://www.tinkutara.com/question/Q60560.png)
Commented by tanmay last updated on 22/May/19

Commented by tanmay last updated on 22/May/19
![3)let x=A and y=(1/A) A∈[1,4] (1/A)∈[0.25,1]](https://www.tinkutara.com/question/Q60562.png)
Commented by tanmay last updated on 22/May/19

Answered by tanmay last updated on 22/May/19
![4) A=x y=(1/(∣x∣)) when x=−1 y=(1/(∣−1∣))=1 when x=4 y=(1/4) A∈[−1,4] (1/([A]))∈ [1,∞) ∩ [(1/4),∞)](https://www.tinkutara.com/question/Q60564.png)
Commented by tanmay last updated on 22/May/19

Commented by MJS last updated on 22/May/19

Commented by tanmay last updated on 22/May/19
