Question Number 45316 by Tawa1 last updated on 11/Oct/18
$$\mathrm{I}\:\mathrm{heard}\:\mathrm{this}\:\mathrm{sum}\:\mathrm{can}\:\mathrm{be}\:\mathrm{close}\:\mathrm{using}\:\mathrm{the}\:\mathrm{Digamma}\:\mathrm{function}. \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{use}\:\mathrm{it}.\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{it}.\:\:\: \\ $$$$\:\:\:\mathrm{sum}\:\mathrm{of}\:\mathrm{nth}\:\mathrm{term}:\:\:\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}.\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{4}.\mathrm{5}.\mathrm{6}}\:+\:\frac{\mathrm{1}}{\mathrm{7}.\mathrm{8}.\mathrm{9}}\:+\:…\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
$${T}_{{n}} =\frac{\mathrm{1}}{\left\{\mathrm{1}+\left({n}−\mathrm{1}\right)\mathrm{3}\right\}\left\{\mathrm{2}+\left({n}−\mathrm{1}\right)\mathrm{3}\right\}\left\{\mathrm{3}+\left({n}−\mathrm{1}\right)\mathrm{3}\right\}} \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{2}\right)\left(\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}\right)\right.} \\ $$$${here}\:{i}\:{am}\:{using}\:{some}\:{formula}\:{mentioned} \\ $$$${Hall}\:{and}\:{knight}\:{Algebra}… \\ $$$${S}_{{n}} ={C}−\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}\right)×\mathrm{2}×\mathrm{1}} \\ $$$${n}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}}={C}−\frac{\mathrm{1}}{\mathrm{2}×\mathrm{3}×\mathrm{2}} \\ $$$${C}=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{2}+\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}\right)} \\ $$$${recheck}… \\ $$$${S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}×\mathrm{2}×\mathrm{3}}=\frac{\mathrm{3}−\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{6}}={T}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${conform} \\ $$$${S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}×\mathrm{5}×\mathrm{6}}=\frac{\mathrm{15}−\mathrm{1}}{\mathrm{60}}=\frac{\mathrm{14}}{\mathrm{60}}=\frac{\mathrm{7}}{\mathrm{30}} \\ $$$${T}_{\mathrm{2}} ={S}_{\mathrm{2}} −{S}_{\mathrm{1}} =\frac{\mathrm{7}}{\mathrm{30}}−\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{7}−\mathrm{5}}{\mathrm{30}}=\frac{\mathrm{1}}{\mathrm{15}} \\ $$$${but}\:{T}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{120}} \\ $$$${So}\:{my}\:{answer}\:{is}\:{not}\:{correct}… \\ $$$${pls}\:{menhion}\:{the}\:{source}\:{of}\:{this}\:{problem} \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}×\mathrm{5}×\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}×\mathrm{8}×\mathrm{9}}+… \\ $$$$= \\ $$
Commented by Tawa1 last updated on 12/Oct/18
$$\mathrm{The}\:\mathrm{question}\:\mathrm{was}\:\mathrm{asked}\:\mathrm{online}.\:\: \\ $$$$\mathrm{But}\:\mathrm{sir},\:\mathrm{when}\:\mathrm{can}\:\mathrm{i}\:\mathrm{apply}\:\mathrm{the}\:\mathrm{formular}\:\mathrm{you}\:\mathrm{used}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
$${ok}..\:{i}\:{am}\:{posting}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18
Commented by Tawa1 last updated on 12/Oct/18
$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}. \\ $$