Menu Close

i-i-Whis-is-it-plz-explain-it-i-1-




Question Number 53688 by kwonjun1202 last updated on 25/Jan/19
i^(i )  ??  Whis is it,, plz explain it  i=(√(−1))
ii??Whisisit,,plzexplainiti=1
Commented by Abdo msup. last updated on 25/Jan/19
we have i =e^((iπ)/2)  ⇒i^i =e^(−(π/2)) .
wehavei=eiπ2ii=eπ2.
Answered by MJS last updated on 25/Jan/19
i=1×e^(i(π/2))   i^i =1^i ×e^(i^2 (π/2)) =1×e^(−(π/2)) =e^(−(π/2)) =(1/( (√e^π )))
i=1×eiπ2ii=1i×ei2π2=1×eπ2=eπ2=1eπ
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
we know a^x =e^(xlog_e a)   now  i^i =e^(iLog_e i) =e^(iLog(0+1×i))   now formula  Log_e (α+iβ)=log_e (α+iβ)+i2πn                             =[log_e (√(α^2 +β^2 )) +itan^(−1) ((β/α))]+i2πn  Log_e (α+iβ)  =(1/2)log_e (α^2 +β^2 )+i{2πn+tan^(−1) ((β/α))}  so as per problem α=0    β=1  so value of Log_e (0+i)  =(1/2)log_e (0^2 +1^2 )+i{2πn+tan^(−1) ((1/0))}  =(1/2)×0+i{2πn+(π/2)}  now   i^i =e^(iLog_e i)    =e^(i{(2πn+(π/2))i})   =e^((2πn+(π/2))×−1)   =e^(−(2πn+(π/2)))   =e^(−(π/2))   principle value
weknowax=exlogeanowii=eiLogei=eiLog(0+1×i)nowformulaLoge(α+iβ)=loge(α+iβ)+i2πn=[logeα2+β2+itan1(βα)]+i2πnLoge(α+iβ)=12loge(α2+β2)+i{2πn+tan1(βα)}soasperproblemα=0β=1sovalueofLoge(0+i)=12loge(02+12)+i{2πn+tan1(10)}=12×0+i{2πn+π2}nowii=eiLogei=ei{(2πn+π2)i}=e(2πn+π2)×1=e(2πn+π2)=eπ2principlevalue

Leave a Reply

Your email address will not be published. Required fields are marked *