Menu Close

I-Incenter-in-ABC-A-2-2-B-6-4-C-4-8-M-8-6-Find-MI-




Question Number 183120 by Shrinava last updated on 20/Dec/22
I−Incenter in  △ABC  A(2,2) , B(6,4) , C(4,8) , M(8,6)  Find:   MI = ?
$$\mathrm{I}−\mathrm{Incenter}\:\mathrm{in}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{A}\left(\mathrm{2},\mathrm{2}\right)\:,\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:,\:\mathrm{C}\left(\mathrm{4},\mathrm{8}\right)\:,\:\mathrm{M}\left(\mathrm{8},\mathrm{6}\right) \\ $$$$\mathrm{Find}:\:\:\:\mathrm{MI}\:=\:? \\ $$
Answered by manolex last updated on 21/Dec/22
I=((Aa+Bb+Cc)/(a+b+c))  a= ∥BC^(→) ∥=(√((4−6)^2 +(8−4)^2 ))=2(√)5  b=∥AC^(→) ∥=(√(2^2 +6^2 ))=2(√(10))  c=∥AB∥=2(√5)  I=(((2,2)2(√5)+(6,4)2(√(10))+(4,8)2(√5))/(4(√5)+2(√(10))))  I= (((4(√5)+12(√(10))+8(√(5  )); 4(√5)+8(√(10))+16(√5)))/(4(√5)+2(√(10))))  I=((4(√(5  ))(3+3(√(2 )) ; 5+2(√2)))/(2(√5)(2+(√2))))  I=2(((3(1+(√2)))/( (√2)(1+(√(2))))) ;((5+2(√2))/( (√2)(1+(√(2))))))  I=(3(√(2   ));  6−(√2))  MI=(√([(3(√2)−8)^2 +(6−(√2)−6)^2 ))  MI=(√(88−48(√2)))  MI=2(√2)  (√(11−6(√2)))  MI=2(√2)((√9)−(√(2)))  MI=2(√(18))−4
$$\mathbb{I}=\frac{{Aa}+\boldsymbol{{B}}{b}+{Cc}}{{a}+{b}+{c}} \\ $$$${a}=\:\parallel\overset{\rightarrow} {{BC}}\parallel=\sqrt{\left(\mathrm{4}−\mathrm{6}\right)^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{4}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{}\mathrm{5} \\ $$$${b}=\parallel\overset{\rightarrow} {{AC}}\parallel=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$${c}=\parallel{AB}\parallel=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${I}=\frac{\left(\mathrm{2},\mathrm{2}\right)\mathrm{2}\sqrt{\mathrm{5}}+\left(\mathrm{6},\mathrm{4}\right)\mathrm{2}\sqrt{\mathrm{10}}+\left(\mathrm{4},\mathrm{8}\right)\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{2}\sqrt{\mathrm{10}}} \\ $$$${I}=\:\frac{\left(\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{12}\sqrt{\mathrm{10}}+\mathrm{8}\sqrt{\mathrm{5}\:\:};\:\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{8}\sqrt{\mathrm{10}}+\mathrm{16}\sqrt{\mathrm{5}}\right)}{\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{2}\sqrt{\mathrm{10}}} \\ $$$${I}=\frac{\mathrm{4}\sqrt{\mathrm{5}\:\:}\left(\mathrm{3}+\mathrm{3}\sqrt{\mathrm{2}\:}\:;\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}\sqrt{\mathrm{5}}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)} \\ $$$${I}=\mathrm{2}\left(\frac{\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\left.\mathrm{2}\right)}\right.}\:;\frac{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\left.\mathrm{2}\right)}\right.}\right) \\ $$$${I}=\left(\mathrm{3}\sqrt{\mathrm{2}\:\:\:};\:\:\mathrm{6}−\sqrt{\mathrm{2}}\right) \\ $$$${MI}=\sqrt{\left[\left(\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{8}\right)^{\mathrm{2}} +\left(\mathrm{6}−\sqrt{\mathrm{2}}−\mathrm{6}\right)^{\mathrm{2}} \right.} \\ $$$${MI}=\sqrt{\mathrm{88}−\mathrm{48}\sqrt{\mathrm{2}}} \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{2}}\:\:\sqrt{\mathrm{11}−\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{9}}−\sqrt{\left.\mathrm{2}\right)}\right. \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{18}}−\mathrm{4} \\ $$$$ \\ $$
Answered by manolex last updated on 21/Dec/22
$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *