Menu Close

I-Incenter-in-ABC-A-2-2-B-6-4-C-4-8-M-8-6-Find-MI-




Question Number 183120 by Shrinava last updated on 20/Dec/22
I−Incenter in  △ABC  A(2,2) , B(6,4) , C(4,8) , M(8,6)  Find:   MI = ?
IIncenterinABCA(2,2),B(6,4),C(4,8),M(8,6)Find:MI=?
Answered by manolex last updated on 21/Dec/22
I=((Aa+Bb+Cc)/(a+b+c))  a= ∥BC^(→) ∥=(√((4−6)^2 +(8−4)^2 ))=2(√)5  b=∥AC^(→) ∥=(√(2^2 +6^2 ))=2(√(10))  c=∥AB∥=2(√5)  I=(((2,2)2(√5)+(6,4)2(√(10))+(4,8)2(√5))/(4(√5)+2(√(10))))  I= (((4(√5)+12(√(10))+8(√(5  )); 4(√5)+8(√(10))+16(√5)))/(4(√5)+2(√(10))))  I=((4(√(5  ))(3+3(√(2 )) ; 5+2(√2)))/(2(√5)(2+(√2))))  I=2(((3(1+(√2)))/( (√2)(1+(√(2))))) ;((5+2(√2))/( (√2)(1+(√(2))))))  I=(3(√(2   ));  6−(√2))  MI=(√([(3(√2)−8)^2 +(6−(√2)−6)^2 ))  MI=(√(88−48(√2)))  MI=2(√2)  (√(11−6(√2)))  MI=2(√2)((√9)−(√(2)))  MI=2(√(18))−4
I=Aa+Bb+Cca+b+ca=BC∥=(46)2+(84)2=25b=∥AC∥=22+62=210c=∥AB∥=25I=(2,2)25+(6,4)210+(4,8)2545+210I=(45+1210+85;45+810+165)45+210I=45(3+32;5+22)25(2+2)I=2(3(1+2)2(1+2);5+222(1+2))I=(32;62)MI=[(328)2+(626)2MI=88482MI=221162MI=22(92)MI=2184
Answered by manolex last updated on 21/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *