Menu Close

i-lim-x-0-cos-x-1-x-2-2-x-4-ii-lim-x-0-e-x-1-x-x-2-2-x-3-6-x-4-iii-lim-x-0-tan-x-x-arc-sin-x-x-




Question Number 120068 by bramlexs22 last updated on 29/Oct/20
(i) lim_(x→0)  ((cos x−1+(x^2 /2))/x^4 )   (ii) lim_(x→0)  ((e^x −1−x−(x^2 /2)−(x^3 /6))/x^4 )  (iii) lim_(x→0)  ((tan x−x)/(arc sin x−x))
$$\left({i}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{{x}^{\mathrm{4}} }\: \\ $$$$\left({ii}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} −\mathrm{1}−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{{x}^{\mathrm{4}} } \\ $$$$\left({iii}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}−{x}}{\mathrm{arc}\:\mathrm{sin}\:{x}−{x}} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Oct/20
lim_(x→0) ((1−(x^2 /2)+(x^4 /(24))−1+(x^2 /2))/x^4 )=(1/(24))               cosx=1−(x^2 /2)+(x^4 /(4!))
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{24}}−\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{{x}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{24}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cosx}=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Oct/20
((e^x −1−x−(x^2 /2)−(x^3 /6))/x^4 )  =lim_(x→0) ((1+x+(x^2 /2)+(x^3 /6)+(x^4 /(24))−1−x−(x^2 /2)−(x^3 /6))/x^4 )  =(1/(24))
$$\frac{{e}^{{x}} −\mathrm{1}−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{{x}^{\mathrm{4}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+\frac{{x}^{\mathrm{4}} }{\mathrm{24}}−\mathrm{1}−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *