Question Number 145547 by physicstutes last updated on 05/Jul/21
$${I}_{{m},{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{{m}} \right)^{{n}} {dx} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{I}_{{m},{n}} \left({mn}+\mathrm{1}\right)\:=\:{I}_{{m},{n}−\mathrm{1}} \\ $$
Answered by qaz last updated on 06/Jul/21
$$\mathrm{I}_{\mathrm{m},\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}} \mathrm{dx}=\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}} \mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{nm}\centerdot\mathrm{x}^{\mathrm{m}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}−\mathrm{1}} \mathrm{dx} \\ $$$$=\mathrm{nm}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{m}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}−\mathrm{1}} \mathrm{dx} \\ $$$$=\mathrm{nm}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{m}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}} }{\mathrm{1}−\mathrm{x}^{\mathrm{m}} }\mathrm{dx} \\ $$$$=\mathrm{nm}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}^{\mathrm{m}} }−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}} \mathrm{dx} \\ $$$$=\mathrm{nm}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}−\mathrm{1}} \mathrm{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{m}} \right)^{\mathrm{n}} \mathrm{dx}\right] \\ $$$$=\mathrm{nm}\left(\mathrm{I}_{\mathrm{m},\mathrm{n}−\mathrm{1}} −\mathrm{I}_{\mathrm{m},\mathrm{n}} \right) \\ $$$$\Rightarrow\mathrm{I}_{\mathrm{m},\mathrm{n}} \left(\mathrm{1}+\mathrm{nm}\right)=\mathrm{nm}\centerdot\mathrm{I}_{\mathrm{m},\mathrm{n}−\mathrm{1}} \\ $$