Menu Close

I-n-0-1-1-u-n-ud-u-Demonstrate-that-n-N-I-n-0-




Question Number 171039 by Kodjo last updated on 06/Jun/22
I_n =∫_0 ^1 (1−u)^n (√(ud(u)))  Demonstrate that ∀n∈N, I_n ≥0
In=01(1u)nud(u)DemonstratethatnN,In0
Answered by thfchristopher last updated on 07/Jun/22
I_n =∫_0 ^1 (√u)(1−u)^n du  =∫_0 ^1 (√u)(1−u)(1−u)^(n−1) du  =∫_0 ^1 (√u)(1−u)^(n−1) du−∫_0 ^1 u^(3/2) (1−u)^(n−1) du  =I_(n−1) +(1/n)∫_0 ^1 u^(3/2) d[(1−u)^n ]  =I_(n−1) +[(1/n)u^(3/2) (1−u)^n ]_0 ^1 −(1/n)∫_0 ^1 (1−u)^n d(u^(3/2) )  =I_(n−1) −(3/(2n))∫_0 ^1 (√u)(1−u)^n du  =I_(n−1) −(3/(2n))I_n   ∴ (1+(3/(2n)))I_n =I_(n−1)   ⇒I_n =((2n)/(2n+3))I_(n−1)   =(((2n)(2n−2)...(2))/((2n+3)(2n+1)...(5)))I_0   I_0 =∫_0 ^1 (√u)du  =(2/3)[u^(3/2) ]_0 ^1 =(2/3)  ∴ I_n =(((2n)(2n−2)...(2)^2 )/((2n+3)(2n+1)...(5)(3)))
In=01u(1u)ndu=01u(1u)(1u)n1du=01u(1u)n1du01u32(1u)n1du=In1+1n01u32d[(1u)n]=In1+[1nu32(1u)n]011n01(1u)nd(u32)=In132n01u(1u)ndu=In132nIn(1+32n)In=In1In=2n2n+3In1=(2n)(2n2)(2)(2n+3)(2n+1)(5)I0I0=01udu=23[u32]01=23Missing \left or extra \right
Commented by Kodjo last updated on 07/Jun/22
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *