I-n-0-1-1-u-n-ud-u-Demonstrate-that-n-N-I-n-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 171039 by Kodjo last updated on 06/Jun/22 In=∫01(1−u)nud(u)Demonstratethat∀n∈N,In≥0 Answered by thfchristopher last updated on 07/Jun/22 In=∫01u(1−u)ndu=∫01u(1−u)(1−u)n−1du=∫01u(1−u)n−1du−∫01u32(1−u)n−1du=In−1+1n∫01u32d[(1−u)n]=In−1+[1nu32(1−u)n]01−1n∫01(1−u)nd(u32)=In−1−32n∫01u(1−u)ndu=In−1−32nIn∴(1+32n)In=In−1⇒In=2n2n+3In−1=(2n)(2n−2)…(2)(2n+3)(2n+1)…(5)I0I0=∫01udu=23[u32]01=23Missing \left or extra \rightMissing \left or extra \right Commented by Kodjo last updated on 07/Jun/22 thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-171038Next Next post: 1-lim-x-0-0-x-2-sec-2-t-dt-x-sin-x-2-pi-2-pi-2-sec-x-cos-x-dx-3-In-a-triangle-if-tan-A-2sin-2C-and-3cos-A-2sin-Bsin-C-find-C- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.