Menu Close

I-n-0-1-1-u-ud-u-Demonstrate-that-n-N-I-n-1-I-n-1-u-n-u-3-2-d-u-and-deduce-the-meaning-of-variations-of-I-n-N-




Question Number 171090 by Kodjo last updated on 07/Jun/22
I_n =∫_0 ^1 (1−u)(√(ud(u)))  Demonstrate that ∀n∈N, I_(n+1) −I_n =(1−u)^n u^(3/2) d(u)  and deduce the meaning of variations of (I_n )∈N
In=01(1u)ud(u)DemonstratethatnN,In+1In=(1u)nu32d(u)anddeducethemeaningofvariationsof(In)N
Commented by Kodjo last updated on 07/Jun/22
Excuse me it's a mistake here is the real subject
Commented by Kodjo last updated on 07/Jun/22
Commented by Kodjo last updated on 07/Jun/22
Answered by aleks041103 last updated on 09/Jun/22
I_(n+1) =∫_0 ^1 (1−u)^(n+1) (√u) du=  =∫_0 ^1 (1−u)(1−u)^n (√u) du=  =∫_0 ^1 (1−u)^n (√u) du−∫_0 ^1 (1−u)^n u(√u) du=  =I_n +∫_1 ^0 (1−u)^n u^(3/2) du  ⇒I_(n+1) −I_n =∫_1 ^0 (1−u)^n u^(3/2) du
In+1=01(1u)n+1udu==01(1u)(1u)nudu==01(1u)nudu01(1u)nuudu==In+10(1u)nu3/2duIn+1In=10(1u)nu3/2du
Commented by aleks041103 last updated on 09/Jun/22
I_(n+1) =∫_0 ^1 (1−u)^(n+1) u^(1/2) du=  =∫_0 ^1 (1−u)^(n+1) d((2/3)u^(3/2) )=  ={(2/3)u^(3/2) (1−u)^(n+1) }_0 ^1 −((2(n+1))/3)∫_1 ^0 (1−u)^n u^(3/2) du=  =−((2(n+1))/3)(I_(n+1) −I_n )  ⇒((2n+5)/3)I_(n+1) =((2n+2)/3)I_n   ⇒I_(n+1) =((2n+2)/(2n+5))I_n   ⇒I_n =((2n)/(2n+3)) ((2n−2)/(2n+1)) ... ((2.0+2)/(2.0+5))I_0   I_0 =∫_0 ^1 (√u)du=(2/3)u^(3/2) ]_0 ^1 =(2/3)  ⇒I_n =((2.2.4.6. ... . 2n)/(3.5.7. ... .(2n+3)))=((2.2^n (1.2. ... .n))/((2n+3)!!))  I_n =((2^(n+1) n!)/((2n+3)!!))  but  (2n+1)!!=1.3. ... .(2n−1)(2n+1)=  =((1.2.3. ... .(2n−1)(2n)(2n+1))/(2.4. ... .(2n−2)(2n)))=  =(((2n+1)!)/(2^n n!))  ⇒(2n+3)!!=(2(n+1)+1)!!=(((2n+3)!)/(2^(n+1) (n+1)!))  ⇒I_n =((4^(n+1) (n+1)!(n!))/((2n+3)!))
In+1=01(1u)n+1u1/2du==01(1u)n+1d(23u3/2)=={23u3/2(1u)n+1}012(n+1)310(1u)nu3/2du==2(n+1)3(In+1In)2n+53In+1=2n+23InIn+1=2n+22n+5InIn=2n2n+32n22n+12.0+22.0+5I0I0=01udu=23u3/2]01=23In=2.2.4.6..2n3.5.7..(2n+3)=2.2n(1.2..n)(2n+3)!!In=2n+1n!(2n+3)!!but(2n+1)!!=1.3..(2n1)(2n+1)==1.2.3..(2n1)(2n)(2n+1)2.4..(2n2)(2n)==(2n+1)!2nn!(2n+3)!!=(2(n+1)+1)!!=(2n+3)!2n+1(n+1)!In=4n+1(n+1)!(n!)(2n+3)!
Commented by Kodjo last updated on 09/Jun/22
Thanks
Thanks
Commented by ilhamQ last updated on 11/Jun/22
]]]]]]]
]]]]]]]

Leave a Reply

Your email address will not be published. Required fields are marked *