I-n-0-pi-2-sin-2-nt-sin-t-dt-Find-lim-n-2I-n-lnn- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 160395 by qaz last updated on 29/Nov/21 In=∫0π/2sin2(nt)sintdtFind::limn→∞(2In−lnn)=? Answered by Kamel last updated on 29/Nov/21 In=∫0π2sin2(nx)sin(x)dxIn+1−In=4∫0π2sin(2n+12x)cos(x2)sin(x2)cos(2n+12)sin(x)dx=∫0π2sin((2n+1)x)dx=12n+1In+1=13+15+17+…+12n+1+1=H2n+1−12Hn∴L=limn→+∞(2In−Ln(n))=limn→+∞(2H2n+1−Hn−Ln(n+1))=limn→+∞(2(H2n+1−Ln(2n+1))+2Ln(2n+1)−Hn−Ln(n+1))=limn→+∞(2(H2n+1−Ln(2n+1))+2Ln(2n+1n+1)−(Hn+1−Ln(n+1)))=γ+2Ln(2)∴limn→+∞2∫0π2sin2(nx)sin(x)dx−Ln(n)=2Ln(2)+γWhere:γ=limn→+∞(Hn−Ln(n))denoteEuler−Mascheroniconstant.And:Hn=1+12+13+…+1n−1+1nthenthharmonicnumber.BENAICHAKAMEL Commented by qaz last updated on 30/Nov/21 thanksalot.verynicesolution. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-n-2-2-2-1-1-2-n-1-2-2-2-3-1-2-1-n-2-2-n-1-2-n-1-1-2-Next Next post: Question-29322 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.