Menu Close

I-n-0-pi-2-sin-2-nt-sin-t-dt-Find-lim-n-2I-n-lnn-




Question Number 160395 by qaz last updated on 29/Nov/21
I_n =∫_0 ^(π/2) ((sin^2 (nt))/(sin t))dt  Find::    lim_(n→∞) (2I_n −lnn)=?
In=0π/2sin2(nt)sintdtFind::limn(2Inlnn)=?
Answered by Kamel last updated on 29/Nov/21
  I_n =∫_0 ^(π/2) ((sin^2 (nx))/(sin(x)))dx  I_(n+1) −I_n =4∫_0 ^(π/2) ((sin(((2n+1)/2)x)cos((x/2))sin((x/2))cos(((2n+1)/2)))/(sin(x)))dx                    =∫_0 ^(π/2) sin((2n+1)x)dx=(1/(2n+1))      I_(n+1) =(1/3)+(1/5)+(1/7)+...+(1/(2n+1))+1=H_(2n+1) −(1/2)H_n       ∴ L= lim_(n→+∞) (2I_n −Ln(n))=lim_(n→+∞) (2H_(2n+1) −H_n −Ln(n+1))          =lim_(n→+∞) (2(H_(2n+1) −Ln(2n+1))+2Ln(2n+1)−H_n −Ln(n+1))          =lim_(n→+∞) (2(H_(2n+1) −Ln(2n+1))+2Ln(((2n+1)/(n+1)))−(H_(n+1) −Ln(n+1)))          =γ+2Ln(2)        ∴  lim_(n→+∞) 2∫_0 ^(𝛑/2) ((sin^2 (nx))/(sin(x)))dx−Ln(n)=2Ln(2)+𝛄   Where: 𝛄=lim_(n→+∞) (H_n −Ln(n)) denote Euler-Mascheroni constant.     And:  H_n =1+(1/2)+(1/3)+...+(1/(n−1))+(1/n)  the n^(th)  harmonic number.                                   BENAICHA KAMEL
In=0π2sin2(nx)sin(x)dxIn+1In=40π2sin(2n+12x)cos(x2)sin(x2)cos(2n+12)sin(x)dx=0π2sin((2n+1)x)dx=12n+1In+1=13+15+17++12n+1+1=H2n+112HnL=limn+(2InLn(n))=limn+(2H2n+1HnLn(n+1))=limn+(2(H2n+1Ln(2n+1))+2Ln(2n+1)HnLn(n+1))=limn+(2(H2n+1Ln(2n+1))+2Ln(2n+1n+1)(Hn+1Ln(n+1)))=γ+2Ln(2)limn+20π2sin2(nx)sin(x)dxLn(n)=2Ln(2)+γWhere:γ=limn+(HnLn(n))denoteEulerMascheroniconstant.And:Hn=1+12+13++1n1+1nthenthharmonicnumber.BENAICHAKAMEL
Commented by qaz last updated on 30/Nov/21
thanks a lot.very nice solution.
thanksalot.verynicesolution.

Leave a Reply

Your email address will not be published. Required fields are marked *