Menu Close

I-n-0-pi-4-1-cos-2n-1-x-dx-Prove-by-parts-that-2nI-n-2n-1-I-n-1-2-n-2-




Question Number 167740 by LEKOUMA last updated on 24/Mar/22
I_n =∫_0 ^(π/4) (1/(cos^(2n+1) x))dx  Prove by parts that:  2nI_n =(2n−1)I_(n−1) +(2^n /( (√2)))
$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}{n}+\mathrm{1}} {x}}{dx} \\ $$$${Prove}\:{by}\:{parts}\:{that}: \\ $$$$\mathrm{2}{nI}_{{n}} =\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}−\mathrm{1}} +\frac{\mathrm{2}^{{n}} }{\:\sqrt{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *