Menu Close

I-n-1-1-1-x-2-n-cos-a-2b-x-dx-to-integrating-by-piece-for-n-2-proven-a-2-4b-2-I-n-2n-2n-1-I-n-1-4-n-1-I-n-2-proven-by-rearring-that-a-2b-2n-1-I-n-n-p-q-2b-




Question Number 158858 by LEKOUMA last updated on 09/Nov/21
I_n =∫_(−1) ^1 (1−x^2 )^n cos ((a/(2b))x)dx  to integrating by piece for n≥2   proven   (a^2 /(4b^2 ))I_(n ) =2n(2n−1)I_(n−1) −4(n−1)I_(n−2)   proven by rearring that   ((a/(2b)))^(2n+1) I_n =n![p((q/(2b)))sin ((a/(2b)))+Q((a/(2b)))cos ((a/(2b)))]
$${I}_{{n}} =\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \mathrm{cos}\:\left(\frac{{a}}{\mathrm{2}{b}}{x}\right){dx} \\ $$$${to}\:{integrating}\:{by}\:{piece}\:{for}\:{n}\geqslant\mathrm{2}\: \\ $$$${proven}\: \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{4}{b}^{\mathrm{2}} }{I}_{{n}\:} =\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}−\mathrm{1}} −\mathrm{4}\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} \\ $$$${proven}\:{by}\:{rearring}\:{that}\: \\ $$$$\left(\frac{{a}}{\mathrm{2}{b}}\right)^{\mathrm{2}{n}+\mathrm{1}} {I}_{{n}} ={n}!\left[{p}\left(\frac{{q}}{\mathrm{2}{b}}\right)\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}{b}}\right)+{Q}\left(\frac{{a}}{\mathrm{2}{b}}\right)\mathrm{cos}\:\left(\frac{{a}}{\mathrm{2}{b}}\right)\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *