Menu Close

I-n-2n-2n-1-I-n-1-I-0-1-Show-that-I-n-4-n-n-2-2n-1-




Question Number 171441 by alcohol last updated on 15/Jun/22
I_n  = −((2n)/(2n + 1)) I_(n−1)   I_0  = 1  Show that I_n  = (((−4)^n (n!)^2 )/((2n+1)!))
In=2n2n+1In1I0=1ShowthatIn=(4)n(n!)2(2n+1)!
Commented by infinityaction last updated on 15/Jun/22
I_(1 ) = −(2/3) , I_2  =  ((−4)/5)×((−2)/3)  I_3  = ((−6)/7)×((−4)/5)×((−2)/3)  pattern  I_n  = ((−2)/3)×((−4)/5)×((−6)/7)........((−2n)/(2n+1))  I_n  = ((−2^2 )/(2×3))×((−4^2 )/(4×5))×((−6^2 )/(6×7))......((−(2n)^2 )/(2n×(2n+1)))  I_n  = (((−1)^n 2^(2n) {1^2 ×2^2 ×3^2 ×.......n^2 })/((2n+1)!))  I_n  = (((−4)^n (n!)^2 )/((2n+1)!))
I1=23,I2=45×23I3=67×45×23patternIn=23×45×67..2n2n+1In=222×3×424×5×626×7(2n)22n×(2n+1)In=(1)n22n{12×22×32×.n2}(2n+1)!In=(4)n(n!)2(2n+1)!

Leave a Reply

Your email address will not be published. Required fields are marked *