I-n-2n-2n-1-I-n-1-I-0-1-Show-that-I-n-4-n-n-2-2n-1- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 171441 by alcohol last updated on 15/Jun/22 In=−2n2n+1In−1I0=1ShowthatIn=(−4)n(n!)2(2n+1)! Commented by infinityaction last updated on 15/Jun/22 I1=−23,I2=−45×−23I3=−67×−45×−23patternIn=−23×−45×−67……..−2n2n+1In=−222×3×−424×5×−626×7……−(2n)22n×(2n+1)In=(−1)n22n{12×22×32×…….n2}(2n+1)!In=(−4)n(n!)2(2n+1)! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-u-n-k-0-n-3k-1-1-k-1-calculate-interms-of-n-S-n-u-0-u-1-u-2-u-n-2-calculate-u-0-u-1-u-2-u-57-Next Next post: Question-40376 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.