Menu Close

I-n-dx-cos-n-x-Prove-that-I-n-n-2-n-1-I-n-2-sin-x-n-1-cos-n-1-x-




Question Number 167666 by LEKOUMA last updated on 22/Mar/22
I_n =∫(dx/(cos^n x))  Prove that  I_n =((n−2)/(n−1))I_(n−2) +((sin x)/((n−1)cos^(n−1) x))
In=dxcosnxProvethatIn=n2n1In2+sinx(n1)cosn1x
Commented by peter frank last updated on 22/Mar/22
Reduction formular
Reductionformular
Answered by chhaythean last updated on 22/Mar/22
Solution  I_n =∫(dx/(cos^n x))=∫sec^n xdx  =∫sec^(n−2) xsec^2 xdx  let  { ((u=sec^(n−2) x⇒du=(n−2)sec^(n−2) xtanxdx)),((dv=sec^2 xdx⇒v=tanx)) :}  I_n =sec^(n−2) xtanx−(n−2)∫sec^(n−2) xtan^2 xdx  =sec^(n−2) xtanx−(n−2)∫sec^n xdx+(n−2)∫sec^(n−2) dx  I_n =sec^(n−2) xtanx−(n−2)I_n +(n−2)I_(n−2)   I_n +(n−2)I_n =sec^(n−2) xtanx+(n−2)I_(n−2)   (n−1)I_n =sec^(n−2) xtanx+(n−2)I_(n−2)   I_n =(((1/(cos^(n−2) x))×((sinx)/(cosx)))/(n−1))+((n−2)/(n−1))I_(n−2)   I_n =((n−2)/(n−1))I_(n−2) +((sinx)/(cos^(n−1) x(n−1))) true  So  determinant (((I_n =((n−2)/(n−1))I_(n−2) +((sinx)/((n−1)cos^(n−1) x)) is proved.)))
SolutionIn=dxcosnx=secnxdx=secn2xsec2xdxlet{u=secn2xdu=(n2)secn2xtanxdxdv=sec2xdxv=tanxIn=secn2xtanx(n2)secn2xtan2xdx=secn2xtanx(n2)secnxdx+(n2)secn2dxIn=secn2xtanx(n2)In+(n2)In2In+(n2)In=secn2xtanx+(n2)In2(n1)In=secn2xtanx+(n2)In2In=1cosn2x×sinxcosxn1+n2n1In2In=n2n1In2+sinxcosn1x(n1)trueSoIn=n2n1In2+sinx(n1)cosn1xisproved.
Commented by LEKOUMA last updated on 22/Mar/22
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *