I-n-dx-cos-n-x-Prove-that-I-n-n-2-n-1-I-n-2-sin-x-n-1-cos-n-1-x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 167666 by LEKOUMA last updated on 22/Mar/22 In=∫dxcosnxProvethatIn=n−2n−1In−2+sinx(n−1)cosn−1x Commented by peter frank last updated on 22/Mar/22 Reductionformular Answered by chhaythean last updated on 22/Mar/22 SolutionIn=∫dxcosnx=∫secnxdx=∫secn−2xsec2xdxlet{u=secn−2x⇒du=(n−2)secn−2xtanxdxdv=sec2xdx⇒v=tanxIn=secn−2xtanx−(n−2)∫secn−2xtan2xdx=secn−2xtanx−(n−2)∫secnxdx+(n−2)∫secn−2dxIn=secn−2xtanx−(n−2)In+(n−2)In−2In+(n−2)In=secn−2xtanx+(n−2)In−2(n−1)In=secn−2xtanx+(n−2)In−2In=1cosn−2x×sinxcosxn−1+n−2n−1In−2In=n−2n−1In−2+sinxcosn−1x(n−1)trueSoIn=n−2n−1In−2+sinx(n−1)cosn−1xisproved. Commented by LEKOUMA last updated on 22/Mar/22 Thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-36590Next Next post: x-1-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.